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Course Description

Principles of statistics and application to AICM; data, information and knowledge concepts; data processing and presentation; descriptive statistics; introduction to inferential statistics for AICM: hypothesis tests (-t-test, ANOVA, Correlations, Chi-square); Regression Analysis: simple linear regression; multiple linear regression; partial correlation; time series/trend analysis; bivariate analysis; multivariate analysis: application of MANOVA and regression, principle component and factor analysis, discriminant, canonical correlations, and cluster analyses in AICM; spatial data analysis; computer applications to statistical analysis (introduction to suitable statistical software: spread sheets, SAS, SPSS, GIS, statistical, other emerging).

Prerequisite: None

Course aims

Provide students with a means of classifying data, comparing data, generating quantitative, testable hypotheses, and assessing the significance of an experimental or observational result

Instruction Methodology

· Lectures

· Demonstration on the use of statistical softwares

· Reading assignments

· Tutorials

Learning outcomes

 At the end of this course the learner should be able to: 
1. Describe key statistical concepts 

2. Discuss basic statistical techniques and models
3. Apply statistical methods as necessary tools in making scientific decisions
4. Apply basic statistical for performing data analysis 

Course Description

1. Principles of statistics and application to AICM

1.1. Data, information and knowledge concepts; 
1.2. Data collection, processing and presentation
1.2.1. Types of data 

1.2.2.  Data collection methods

1.2.3. Procedure for processing data

1.2.4. Statistical/data presentation tools
2. Descriptive Statistics


2.1.
The mean


2.2.
Measures of variability


2.3.
Properties of the Variance and Standard Deviation

3. Introduction to inferential statistics  

3.1. Probability and Sampling Means 
3.2. Standard error
3.3. Hypothesis and Hypothesis tests 
3.4. F-test
3.5. t-test
4. Analysis of Variance


4.1
Definitions and assumptions


4.2
Procedure of ANOVA


4.3
Types of ANOVA



4.3.1. One way ANOVA



4.3.2. Two way ANOVA

5. Chi-square 

5.1
Procedure in Chi-Square Test of Independence



5.1.1. DF in Chi-Square Test of Independence



5.1.2. Hypothesis for Chi-Square Tests

5.2
Chi-Square Distribution


5.2.1.
 F-Distribution


5.2.2. Properties of Chi-Square Distribution


5.2.3. Cumulative Probability and The Chi-Square
6. Regression Analysis

6.1
Simple Linear regression



6.1.1.
 Predictive methods



6.1.2. Defining the Regression Model



6.1.3. Evaluating the Model Fit



6.1.4. Confidence interval for the regression line

6.2
Multiple Regression


6.3
Time series/Trends Analysis


6.3.1. Components of a Time Series



6.3.2. Global and Local Trends



6.3.3. Time Series Methods



6.3.4. Trend Analysis

7. Correlations and Partial Correlation

7.1
The Correlation Coefficient (r) 
7.2
Coefficient of Determination (R2)

7.2.1. Definitions

7.2.2. (R2) relation to variance

7.2.3. Interpretation of (R2)

7.2.4. Adjusted (R2)
7.2.5. Generalized (R2) 
 7.3     Partial Correlations

7.3.1. Formal definitions



7.3.2. Computations


7.3.3. Interpretation

8. Biveriate Analysis
8.1. Steps in Biveriate Analysis

8.2. Biveriate Discriptives

9. Multivariate Analysis (MANOVA)
9.1. General Principles of Multivariate Analysis
9.2. Assumptions in MANOVA
10.  Disciminant Analysis
10.1  Purpose of Discriminant Analysis
10.2  Discriminant Functions
11.  Principle component analysis
      11.1. Concepts of Principle Component Analysis (PCA)
      11.2. Practical issues of PCA 
12.  Factor Analysis
      12.1. Definition and Concepts Factor Analysis
      12.2. Types of Factor Analysis
      12.3. Criteria for determining the number of factors
13. Cluster Analysis
      13.1. Types of clustering

      13.2. Application of cluster Analysis

      13.3. Evaluation of clustering

14. Canonical Correlations

      14.1. Concepts and statistics of canonical analysis

      14.2. Assumptions in canonical analysis

      14.3. Interpretation of canonical results

Assessment

CATS
-40%


Assignments – 10%


In-class CATS (2) – 30%

Exam-60%

Assignments

Exercises will be given at the end of every topic

Course Evaluation

Through process monitoring and evaluation at the end of the semester
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TOPIC 1. Principles of statistics and application to AICM

Introduction

Statistics is a discipline which mainly deals with data quantifications. It allows you to properly collect, analyze, interpret and present data in an easy to understand format. It is a basic skill needed to ensure proper understanding of many of the more centralized statistic fields. Modern agricultural production is characterized by some particularities and many different activities. So, it arises different problems and different nature of agricultural materials data which require different approaches to the use of statistical methods.  Even in the case of nonnumerical data, statistical methods use transformations to  change nonnumerical data to numerical data, with the aim of achieving some level of quantification to make conclusions about the matter of interest. Many data in agriculture are of numerical character which are accompanied with the existence of the variability of data. Variability is a characteristic of biological and agricultural data. Statistics can be used as a tool for research, spreading in many fields of research, like in agronomy. For these The statistical education of agriculture students is very important for many reasons. The study of statistics is helpful in experimental work both for the analysis of the data and for the design of the experiment in such a way that valid and efficient results are produced. It is obvious that statistical methods are useful for students who are preparing themselves for specialisation in their field, including those studying agriculture information systems

Learning Outcome

By the end of this topic the students are expected to:

1. Organize, summarize and describe both the primary and secondary data

2. Apply the most data collection process

3. Use the most appropriate procedure  for processing of the data

4. Use the most appropriate data presentation tool

Key Terms
Statistics -Collection of methods for planning experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions.

Random Variable -A variable whose values are determined by chance. 

Population -All subjects possessing a common characteristic that is being studied. 

Sample - A subgroup or subset of the population. 

Parameter - Characteristic or measure obtained from a population. 

Variable – A characteristic that differs from one individual to the next

Deviation Score - Difference between the mean and a raw score x-x
Observational unit (observation) --- single individual who participates in a study

Random Variables - Variables describe the properties of an object or population. If we measure a variable in a fair or unbiased way, and for example, have no means of knowing the specific outcome of the measure before it is conducted, the variable is said to be random. 

Statistic (not to be confused with Statistics)-Characteristic or measure obtained from a sample.
1.1. Data, information and knowledge concepts

Statistical data sets are collection of data maintained in an organized form. The basis of any statistical analysis has to start with the collection of data, which is then analyzed using statistical tools. The first step in getting information from the data is to know the objectives of the study. Data can be described statistically using both numerically and graphically

Steps to be followed in data gathering include:
· Stating the objective of the study-Survey or Experiment

· Identifying the variables of interest

· Choosing and appropriate design for the study

· Collecting the data

1.2. Data collection, processing and presentation; 
Data collection is a term used to describe a process of preparing and collecting data - for example as part of a process improvement or similar project. The purpose of data collection is to obtain information to keep on record, to make decisions about important issues, to pass information on to others.  In general, data is collected to provide information regarding a specific topic.

1.2.1. Types of Data 
Mainly two main types of data:

                1) Primary data
                2) Secondary data 
 Primary data
The data’s which are collected for the first time and those, which are original in character, is refer as primary data. There are several methods for primary data collections. Such methods include personal communication through interviews and personal observation.
Secondary data 
The data’s that is already collected by some other person who undergone statistical processes are refer to as secondary data. The secondary data’s may be published or unpublished. 
1.2.2. Data Collection Methods
Data collection by interviews- the data’s can be collected by means of personal interviews or even by means of telephonic interviews.
Data collection by Observation - In this method of learning data collections, data’s collected by means of observation. The observer can collect the data or he can collect the data by personally visiting the field.

Questionnaire method - This is one of the popular methods of data collections. During enquiries, this method is mainly used.

Schedule method - For solving social problems, these methods of data collections are considered as an important one.

Data collection by case study - The researchers can collect the data’s by taking one or more units for special study.

Data collections by Survey method - The data’s are collect by means of undertaking surveys. This method is the most commonly used method for the collection of data’s

1.2.3. Procedure for processing Data
· Receive the raw data source

· Create the data base from the raw data source

· Edit the data base

· Finalize the data base

· Create files from the data base

1.2.4. Statistical/Data Presentation Tools

Descriptive statistics enable us to understand data through summary values and graphical presentations. Summary values not only include the average, but also the spread, median, mode, range, and standard deviation. It is important to look at summary statistics along with the data set to understand the entire picture, as the same summary statistics may describe very different data sets. Descriptive statistics can be illustrated in an understandable fashion by presenting them graphically using statistical and data presentation tools. 
When creating graphic displays, keep in mind the following questions:
· What am I trying to communicate? 

· Who is my audience? 

· What might prevent them from understanding this display? 

· Does the display tell the entire story? 

Several types of statistical/data presentation tools exist, including: (a) charts displaying frequencies (bar, pie, and Pareto charts, (b) charts displaying trends (run and control charts), (c) charts displaying distributions (histograms), and (d) charts displaying associations (scatter diagrams).

Different types of data require different kinds of statistical tools. There are two types of data. Attribute data are countable data or data that can be put into categories: e.g., the number of people willing to pay, the number of complaints, percentage who want blue/percentage who want red/percentage who want yellow. Variable data are measurement data, based on some continuous scale: e.g., length, time, cost.

Choosing Data Display Tools

	To Show 
	Use 
	Data Needed 

	Frequency of occurrence:
Simple percentages or comparisons of magnitude 
	Bar chart
Pie chart

Pareto chart 
	Tallies by category (data can be attribute data or variable data divided into categories) 

	Trends over time 
	Line graph
Run chart

Control chart 
	Measurements taken in chronological order (attribute or variable data can be used) 

	Distribution: Variation not related to time (distributions) 
	Histograms 
	Forty or more measurements (not necessarily in chronological order, variable data) 

	Association: Looking for a correlation between two things
	Scatter diagram
	Forty or more paired measurements (measures of both things of interest, variable data)


Summary

· Information gathering, processing and presentation are major components of any experiment

· Data can be presented in tables, graphs, pie charts etc

· Descriptive statistics enable us to understand data through summary values and graphical presentations.

· There are mainly two main types of data collections; primary data collection and Secondary data collection

Learning Activities

Questions on key sections
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TOPIC 2 – DESCRIPTIVE STATISTICS

 Introduction
The main two types of statistics are descriptive Statistics and inferential statistics. Descriptive statistics is concerned with summary calculations, graphs, charts and tables, while Inferential Statistics is a method used to generalize from a sample to a population. For example, the average income of all families (the population) in Kenya can be estimated from figures obtained from a few hundred (the sample) families.
Learning Outcome
By the end of this topic the student should be able to:

· Know how to calculate the population means and sample means

· Numerate the assumptions involved in calculating the population and sample means

· Define the properties of population means and sample means

Key Terms

Standard deviation (SD) - a computed measure of the dispersion or variability of a distribution of scores around a given point or line. It measures the way an individual score deviates from the most representative score (mean). A small SD indicates little individual deviation or a homogeneous group, and a large SD indicates much individual deviation or a heterogeneous group.

Standard error - a measure or estimate of the sampling errors affecting a statistic; a measure of the amount the statistic may be expected to differ by chance from the true value of the statistic.

Standard error of estimate - n the standard deviation of the differences between the actual values of the dependent variables (results) and the predicted values. This statistic is associated with regression analysis.

Standard error of the mean - n an estimate of the amount that an obtained mean may be expected to differ by chance from the true mean.

Statistical notation review

• The Greek letter sigma (Σ) means ‘add up’.

– Σx means add all of the scores for variable x.

– Σy means add all of the scores for variable y.

• Σx2 means add the entire x scores after squaring them.

• (Σx)2 means add all of the x scores first, then square them.

• Σ(x - y)2 means subtract the y score from each x score then square the difference.

2.1. The Mean
The mean, or μ, is the average of a set of measurements. It can be viewed as the expected outcome E(x) of an event x, such that if the measurement is performed multiple times, the average value would be the most common outcome.

Mean - three definitions (M = sample mean, ( = population mean)

1.
( = ( Y ( N  ( just add up the scores and divide by number of scores

2.
( (Y - () = 0 – the mean is the point that makes the sum of deviations about it exactly zero – that is, it is a balance point
3.
( (Y - ()2 is minimal – the mean is the point that makes the sum of squared deviations about it as small as possible.  
Properties of the Mean

· Sensitive to each score in the distribution.

· Sensitive to extreme scores.






· Most stable measure, resists sampling fluctuation



· Unbiased estimate of µ.








· Used in some form or other in almost all other statistical procedures.

· Algebraic center of the distribution.
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It is important to differentiate between the population mean μ and the sample mean [image: image2.png]


.
The population mean is the expected outcome, such that if an infinite number of measurements are made, the average of the infinite measurements is the result. This represents the true value of a measurement. The population mean is usually denoted μ, and is the expected value E(x) for a measurement.

[image: image169.png]



Population Mean=

The sample mean is the average value of a sample, which is a finite series of measurements, and is an estimate of the population mean. The sample mean, denoted [image: image3.png]


, is calculated with the formula

[image: image170.png]


Sample Mean=

Example, if we use atomic absorbance spectroscopy to measure sodium content of five different cans of soup, and obtain the results 108.6, 104.2, 96.1, 99.6, and 102.2 mg, the sample mean is (108.6 + 104.2 + 96.1 + 99.6 + 102.2)/5 = 102.1 mg sodium.

Algebra Center
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1. Measurement on interval or ratio scale.





2. Best used when the distribution is normal.
2.2. Measures of Variability

What is variability - The Mean describes the ‘typical’ score; measures of variability show how much the rest of the scores in the distribution are spread out around the mean.

Variance and Standard Deviation
The variance and standard deviation are related indicators of the spread of data within a population or sample. The same distinction exists between the population and sample variance. The population variance and standard deviation, denoted σ2 and σ, are the deviation among individual measurements from the population mean, for the entire population. For the sample variance and standard deviation, s2 and s, it is how much each individual measurement deviates from the sample mean. As is the case with the mean, the population variance and standard deviation are the expected, or true, deviations. The population variance is calculated using the population mean

[image: image6.png]



To calculate the sample variance, we first find the errors of all the measurements, that is, the difference between each measurement and the sample mean,[image: image7.png]


. We then square each value and add them all together, then divide by the number of samples, minus 1. The sample variance uses the degrees of freedom n-1, we lose a degree of freedom because we are estimating the population mean with the sample mean. This leaves us with one less independent measurement, so we must subtract one

[image: image8.png]



The sample standard deviation is simply the square-root of the sample variance, [image: image9.png]



Standard Deviation.                    Mean squared deviations Score                                                                  
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2.3. Properties of the Variance and Standard Deviation

· Sensitive to the location of each score in the distribution.

· Sensitive to extreme scores.

· Resistant to sampling fluctuation.

· Is used in higher order statistical computations.

Assumptions

· The variables are measured on an interval or ratio scale.

· There are no outliers in the distribution.

Interpretation and Use

• How much difference is there in a set of scores– Are the scores similar?

• Provides input to other statistical procedures.

Summary

· The Variance represents the mean squared deviation score.

· The Standard Deviation is the square root of the variance.

· The higher the Standard Deviation the more spread out the scores will be.

· S is the symbol used to represent the sample standard deviation.

· S2, or s2, is the unbiased estimate of the population variance σ2.

· S, or s, is the unbiased estimate of the population standard deviation σ.

· The mean is the best estimator of any score in a distribution.

· The deviation score indicates the amount of error in this prediction.

· The sum of the deviation scores always equals zero.

· The sample mean, M, is used to estimate the population parameter, µ.

Learning Activities
Exercises on the topics
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TOPIC 3 - INTRODUCTION TO INFERENTIAL STATISTICS
Introduction
In most cases an inferential statistic is used to test some hypothesis. Do groups differ on some outcome variable? Is the difference more than would be expected by chance? Can one factor predict another? Inferential statistics are used to make generalizations from a sample to a population. Hypothesis testing is a statistical method that is used in making statistical decisions through experimental data. Hypothesis Testing is basically an assumption that we make about the population parameter. There are two sources of error that may result in a sample's being different from the population from which it is drawn.

Learning outcome

At the end of this topic, students are expected to:

· Know how inferential statistics can be used to draw conclusions

· Understand the major components of inferential statistics

· Identify the sources errors that cause differences in the population
· Understand how to use standard error of the mean and Z-test in statistics

Key Terms

Inferential statistics
Standard error of the mean

Sampling
Level of significance: In hypothesis testing, the level of significance refers to the degree of significance in which we accept or reject the hypothesis. In hypothesis testing, 100% accuracy is not possible for accepting or rejecting a hypothesis. So, we therefore select a level of significance that is usually 1%, 5% or 10%.

Power: In Hypothesis testing, power is usually known as the probability of correctly accepting the null hypothesis. In hypothesis testing, 1-beta is called power of the analysis.

One-tailed test: In hypothesis testing, when the given statistical hypothesis is one value like H0: μ1 = μ2, it is called the one-tailed test.

Two-tailed test: In hypothesis testing, when the given statistics hypothesis assumes a less than or greater than value, it is called the two-tailed test.
3.1. Probability and Sampling Means.

The difference between the mean of a sample and the population mean is called sampling error. We want to reduce sampling error as much as possible, and the law of large numbers tells us that we can do this by having a large sample. One of the main goals of statistics is to determine the probability that our sample is representative of the population and a large sample is more likely to be representative of the population than is a small sample. It should be clear that if you repeatedly take a sample from a population and calculate the means of those samples, the means will likely not all be the same (unless your population has no variability). If you take all the sample means and plot them on a histogram, you will have created what is called a distribution of sample means, sometimes just referred to as a sampling distribution. In other words, if you repeatedly took samples of size n from the population, computed the means of the samples, then made a frequency histogram of the means, you would have a distribution of sample means.
The distribution of sample means has some interesting characteristics: if samples are large then the sampling distribution will approximate a normal distribution, which is handy for computing probabilities. the mean of your sampling distribution, which is sometimes designated [image: image10.png]


, will be the same as the population mean. 

The standard deviation of the sampling distribution is called the standard error of means, designated [image: image11.png]


, and is calculated by dividing the population standard deviation by the square root of n. In other words,

 [image: image12.png]


= [image: image13.png]


.
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To compute the z score, you calculate how far the sample mean is from the population mean, then divide that difference by the standard error: 

3.2. Standard Error

If you measure a sample from a wider population, then the average (or mean) of the sample will be an approximation of the population mean. But how accurate is this?

If you measure multiple samples, their means will not all be the same, and will be spread out in a distribution (although not as much as the population). Due to the central limit theorem, the means will be spread in an approximately Normal, bell-shaped distribution.

The standard error or standard error of the mean, of multiple samples is the standard deviation of the sample means, and thus gives a measure of their spread. Thus 68% of all sample means will be within one standard error of the population mean (and 95% within two standard errors).

What the standard error gives in particular is an indication of the likely accuracy of the sample mean as compared with the population mean. The smaller the standard error, the less the spread and the more likely it is that any sample mean is close to the population mean. A small standard error is thus a Good Thing.

When there are fewer samples, or even one, then the standard error, (typically denoted by SE or SEM) can be estimated as the standard deviation of the sample (a set of measures of x), divided by the square root of the sample size (n): SE = stdev(xi) / sqrt(n)
As an example, suppose we select a random sample of 12 farmers (n = 12) and measure their maize yields per hectare, we might find x = 1.5 tons/ha and s = 0.6 tons. Then our estimate of m is given by x = 1.5 tons and its standard error (s.e.) is given by the formula s.e = s/n In this case it is 0.6 / 12= 0.17 tons/ha. From the above formula it is clear that we get precise estimates either because the data have small variability (i.e. s is small) or because we take a large sample, (i.e. n is large). For example, if, instead we had taken a larger sample of 108 farmers that had given rise to the same mean and standard deviation, then the standard error of the mean would have been 0.058. Equally, if yields had been less variable at s = 0.2 tons/ha then with 12 farmers, we would also have had an s.e. of 0.058

Steps in calculating the standard error of the mean

[image: image176.png]


Determine the population mean or average. The population mean is simply taking each sample and dividing it by a count of the number of samples in the population. The simplest method is to use the AVERAGE function in most spreadsheet programs.

Step 1. Determine the population mean or average. The population mean is simply taking each sample and dividing it by a count of the number of samples in the population. The simplest method is to use the AVERAGE function in most spreadsheet programs.
Step 2  . [image: image14.emf]








Calculate the standard deviation of the population. The standard deviation is a measurement of the dispersion of the samples of the population from the mean. Each unit of standard deviation is a likelihood that the sample population falls within that range. 

Step 3.   
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Calculate the Standard Error of the Mean. The Standard Error of the Mean is the likelihood range of values of the Mean of the population. The Standard Error or otherwise SE of the mean is calculated by taking the Standard Deviation and dividing by the square root of the number of samples, n. The value of knowing the Standard Error of the Mean is determining with confidence what a range of values the Mean may reside. 
3.3. Hypothesis and Hypothesis Tests
There are mainly two types of hypotheses

1). Null hypothesis: Is a statistical hypothesis testing that assumes that the observation is due to a chance factor. In hypothesis testing, null hypothesis is denoted by; H0: μ1 = μ2, which shows that there is no difference between the two population means.

Examples of null hypotheses (H0):
1. The mean life of a new product at design stress level meets (is equal to) a specified standard value.

2. The average performance of product design A is the same as the average performance of product design B.

3. There is no difference in the average quality of materials from supplier X and the average quality of materials from supplier Y.

2). Alternative hypothesis: Contrary to the null hypothesis, alternative hypothesis shows that observations are the result of a real effect. The alternative hypothesis (H1) is a statement that the null hypothesis is not true. It is the statement that must be true if the null hypothesis is false. 
Examples of alternative hypotheses are:

1a. The mean life of a new product at design stress level exceeds (or does not meet) a specified value.

2a. The average performance of design A is greater (or less) than the performance of design B.
3a. The quality of materials from supplier X is better (or worse) than that of supplier Y.
 Statistical decision for hypothesis testing 

In statistical analysis, we have to make decisions about the hypothesis. These decisions include deciding if we should accept the null hypothesis or if we should reject the null hypothesis. Every test in hypothesis testing produces the significance value for that particular test. In Hypothesis testing, if the significance value of the test is greater than the predetermined significance level, then we accept the null hypothesis. If the significance value is less than the predetermined value, then we should reject the null hypothesis. For example, in Hypothesis testing, if we want to see the degree of relationship between two stock prices and the significance value of the correlation coefficient is greater than the predetermined significance level, then we can accept the null hypothesis and conclude that there was no relationship between the two stock prices. However, due to the chance factor, it shows a relationship between the variables
The procedure for evaluating a statistical hypothesis includes:

1) Developing one null hypothesis, 

2) Developing one alternative hypothesis, 

3) Deciding upon a rejection region (p=significance level) which determines the critical value for the test, 

4)  Calculating the test statistic based on the observations, and 

5)  Comparing the test-statistic with the critical test-value to determine if the null hypothesis can be rejected

Types of errors in hypothesis testing 

Type I error: In hypothesis testing, there are two types of errors. The first is type I error and the second is type II error. In Hypothesis testing, type I error occurs when we are rejecting the null hypothesis, but that hypothesis was true. In hypothesis testing, type I error is denoted by alpha. In Hypothesis testing, the normal curve that shows the critical region is called the alpha region.

Type II errors: In hypothesis testing, type II errors occur when we accept the null hypothesis but it is false. In hypothesis testing, type II errors are denoted by beta. In Hypothesis testing, the normal curve that shows the acceptance region is called the beta region.

Estimating the probability of encountering a type II error (denoted beta) is more involved than estimating the probability of a type I error. 

Beta depends on four factors: 

1) The true difference between the sample estimate and the true value of the population parameter. (Beta decreases as the difference between these two increases) 
2) The significance level alpha used to evaluate the null hypothesis and whether the test is one sided or two sided. (Beta increases as alpha decreases.) 
3) The standard error of the sampled population. (Beta increases as sigma increases.) 
4) The size of the sample n. (Beta decreases as n increases.) 

Estimating beta is referred to as determining the power of a test (Power = 1- .  The safest way to avoid type I and type II errors is to increase the sample size, n. 
[image: image16.emf]
3.4. F-Test
The F-test is designed to test if two population variances are equal. It does this by comparing the ratio of two variances. So, if the variances are equal, the ratio of the variances will be 1. All hypothesis testing is done under the assumption that the null hypothesis is true
If the null hypothesis is true, then the F test-statistic given above can be simplified. This ratio of sample variances will be test statistic used. If the null hypothesis is false, then we will reject the null hypothesis that the ratio was equal to 1 and our assumption that they were equal. The F test statistic is simply the ratio of two sample variances. 
There are several different F-tables. Each one has a different level of significance. So, find the correct level of significance first, and then look up the numerator degrees of freedom and the denominator degrees of freedom to find the critical value. You will notice that all of the tables only give level of significance for right tail tests. Because the F distribution is not symmetric, and there are no negative values, you may not simply take the opposite of the right critical value to find the left critical value. The way to find a left critical value is to reverse the degrees of freedom, look up the right critical value, and then take the reciprocal of this value. For example, the critical value with 0.05 on the left with 12 numerator and 15 denominator degrees of freedom is found by taking the reciprocal of the critical value with 0.05 on the right with 15 numerator and 12 denominator degrees of freedom. 

Cochran's theory states that the ratio, 
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is F-distributed with degrees of freedom a - 1 and N - a. Therefore, if,  
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 where,  

we reject the null hypothesis and conclude that some of the variability of the data is due to differences in the treatment levels.

3.5. t-test
 The t distributions were discovered by William S. Gosset in 1908. Gosset was a statistician employed by the Guinness brewing company which had stipulated that he not publish under his own name. He therefore wrote under the pen name ``Student.'' These distributions arise in the following situation. Suppose we have a simple random sample of size n drawn from a Normal population with mean [image: image19.png]


 and standard deviation [image: image20.png]


. Let [image: image21.png]


denote the sample mean and s, the sample standard deviation. Then the quantity 
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has a t distribution with n-1 degrees of freedom. 

Note that there is a different t distribution for each sample size, in other words, it is a class of distributions. When we speak of a specific t distribution, we have to specify the degrees of freedom. The degrees of freedom for this t statistics comes from the sample standard deviation s in the denominator of equation 1 above. 

The t density curves are symmetric and bell-shaped like the normal distribution and have their peak at 0. However, the spread is more than that of the standard normal distribution. This is due to the fact that in formula 1, the denominator is s rather than [image: image23.png]


. Since s is a random quantity varying with various samples, the variability in t is more, resulting in a larger spread. 

The larger the degrees of freedom, the closer the t-density is to the normal density. This reflects the fact that the standard deviation s approaches [image: image24.png]


for large sample size n. You can visualize this in the applet below by moving the sliders. The stationary curve is the standard normal density.
Large value of t indicates a real difference in the two distributions. The calculated value of t is compared with a table of critical values, to determine probability that difference between two samples is due to chance alone. The critical value of t is looked up in table. The critical value depends on:

1. The sizes of the two samples. Larger sample, lower critical value to accept that difference between means is not due to random chance.

2. The level of significance chosen. Usually P = 0.05 (i.e. will accept 5% chance that difference is not systematic, but due to chance alone). If choose P = 0.01, then critical value is larger. If choose P = 0.10, critical value is lower.

3. Directional null hypothesis (1-tailed test) vs. Nondirectional null hypothesis (2-tailed test). One tailed test has a lower critical value, because if difference was due to chance alone, it would favor null hypothesis only half the time - if by chance the samples differed in direction opposite

Assumptions in One sample t-test:

1. Dependent variables should be normally distributed.

2. Samples drawn from the population should be random.

3. The samples should be independent.

4. Sample size should be less than 30.

5. We should know the population mean.

Procedure for one sample t-test:

1. Set up the hypothesis for one sample t-test :

a. Null hypothesis: In one sample t-test, null hypothesis assumes that there are no significance differences between the population mean and the sample mean.

b.  Alternative hypothesis: In one sample t-test, the alternative hypothesis assumes that there is a significant difference between the population mean and the sample mean.
2. Calculate the standard deviation for one sample t-test by using this formula:
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Where,
S = Standard deviation for one sample t-test
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= Sample mean

n = number of observations in sample

3. Calculate the value of the one sample t-test, by using this formula:
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Where,
t = one sample t-test
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= population mean

4. Calculate the degree of freedom by using this formula:

V = n – 1
Where,
V= degree of freedom

5. Hypothesis testing: In hypothesis testing for the one sample t-test, statistical decisions are made to decide whether or not the population mean and the same mean are different. In hypothesis testing, we will compare the calculated value with the table value. If the calculated value of the one sample t-test is greater than the table value, then we will reject the null hypothesis. Otherwise, we will reject the alternative hypothesis.
Summary
Inferential statistic is used to test some hypothesis. It helps the statticians to make scientific conclusions based on the set hypothesis. Among the many tests used under inferential statistics are t- and F-tests. These tests will be used to tests whether groups or events differ. They can also be used to quantify the magnitude of the difference.
Learning activities

Questions on the topic for practice
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TOPIC 4     ANALYSIS OF VARIANCE


Introduction

ANOVA stands for analysis of variance and was developed by Ronald Fisher in 1918. ANOVA is a statistical method that is used to do the analysis of variance between n groups. On the other hand t-test is the test used when the researcher wants to compare two groups.  For example, if a researcher wants to compare the income of people based on their gender, they can use the t-test.  Here, we have two groups: male and female. To compare the two groups, t-test is the best test.  However, there is sometimes a problem when comparing groups that are more than two groups. In these cases, when we want to compare more than two groups, we can use the t-test as well, but this procedure is long. For example, first we would have to compare the first two groups. Then we would have to compare the last two groups. Finally, we would have to compare the first and the last group.  This would take more time and there would be more possibility for mistakes. Thus, Fisher developed a test called ANOVA that can be applied to compare the variance when groups are more than two. 
Learning outcome

At the end of this topic, students are expected to:

· Know how assumptions under which analysis of variance is performed
· Understand steps in the performance of Analysis of variance
· Subject basic statistical data to analysis of variance and make valid conclusions
Key Terms

Analysis of variance, Degree of Freedom, p-value, one way ANOVA, two way ANOVA
4.1. Definitions and assumptions in ANOVA
1.      Normality: The first assumption in ANOVA is that the data should be normally distributed or the distribution of the particular data should be normal. There are many statistical tests that are applied to know the distribution of the ANOVA data. More commonly, many researchers use Kolmogorov-Smirnov, Shapiro-Wilk, or the histogram test to test the normality of the data.

2.      Homogeneity: The second important assumption in ANOVA is that homogeneity or variance between the groups should be the same. In SPSS, Levene’s test is applied to test the homogeneity of the ANOVA data.

3.      The third assumption is ANOVA is independence of case. This means that the grouping variables should be independent of each other or there should not be any pattern between the cases.

In research, after the regression technique, ANOVA is the second technique that is the most commonly used by the researcher. It is used in business, medicine or in psychology research. For example, in business, ANOVA is used to know the sales difference of different regions. A Psychology researcher can use ANOVA to compare the behavior of different people. A medical researcher can use ANOVA statistics in the experiment of a drug as he or she can test whether or not the drug cures the illness.

4.2. Procedure of ANOVA
1. Set up hypothesis: To perform ANOVA statistics, a researcher has to set up the null and alternative hypothesis.
2. Calculation of Mean Sum of Squares between the samples (MSB), Mean Sum of Squares Within the samples (MSW) and F ratio: After set up, the researcher must state the hypothesis and calculate the variance between the samples. In the calculation of variance between the samples, first we calculate the grand mean from the all the samples. Then, the researcher must make the deviation from individual mean to the grand mean for each sample, and square the deviation and divide the square deviation of all the samples by their degree of freedom.  This is called MSB, 
3. The second component of ANOVA statistics will be the variance within the sample. To calculate the variance within the sample, take each deviation sample from the respective sample means, find the square of each sample, and divide it by the respective degree of freedom. This is called MSW. The ratio of the MSB and MSW is called the F ratio.
4. Testing of hypothesis in ANOVA: In ANOVA statistics, the calculated F ratio value is compared to the standardized table value. If the calculated F ratio value is greater than the table value, we will reject the null hypothesis and conclude that the means of the groups are different. If the calculated value is less than the table value, then we will accept the null hypothesis and conclude that the means of
4.3. Types of ANOVA
4.3.1. One-Way ANOVA
The one-way ANOVA is a method of analysis that requires multiple experiments or readings to be taken from a source that can take on two or more different inputs or settings. The one-way ANOVA performs a comparison of the means of a number of replications of experiments performed where a single input factor is varied at different settings or levels. The object of this comparison is to determine the proportion of the variability of the data that is due to the different treatment levels or factors as opposed to variability due to random error. The model deals with specific treatment levels and is involved with testing the null hypothesis [image: image29.png]7.
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 represents the level mean. Basically, rejection of the null hypothesis indicates that variation in the output is due to variation between the treatment levels and not due to random error. If the null hypothesis is rejected, there is a difference in the output of the different levels at significance [image: image31.png]


 and it remains to be determined between which treatment levels the actual differences lie.

 

Inputs
Required inputs to perform a one-way ANOVA are the number of levels being compared, a, and the number of replications at each level, [image: image32.png]


. Typically, the user is asked to provide a value for the risk factor, [image: image33.png]


, which represents the Type 1 error probability the user is willing to live with.

 

Once this information has been obtained, the actual results of the experiments need to be entered. Ideally, an input grid based on the values of a and [image: image34.png]


would facilitate the input of this information. The experiment result data will be denoted as, 
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 where, i = 1, 2, … a is the number of levels being tested.
j = 1, 2, … [image: image36.png]


 is the number of replicates at each level.

The resulting input grid would appear like the following: 
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 Note that the number of replications at each level need not be equal, or that [image: image38.png]


 need not be equal to [image: image39.png]


, and so forth.

The total number of data points for a given data set will be calculated as,  

[image: image40.png]N = i:m
=1




It should be noted that these N data points should be collected in a random order to insure that the effects of unknown “nuisance variables” will not affect the results of the experiment. A common example of this is a warm-up effect of production machinery, in which the output will vary as the machine accumulates more usage time from initial start-up.

 

Data Analysis
In ANOVA analysis, the output of each experiment, or observation, is thought to consist of variations of an overall mean value. These variations can have two sources: variation due to the factor or level and variation due to random error. The model used for the data in ANOVA analysis follows the form, 
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where, 
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= the overall mean,

[image: image43.png]


= the level effect, and
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= the random error component. 

Since the purpose of this analysis is to determine if there is a significant difference in the effects of the factors or levels, the null hypothesis can also be written as [image: image45.png]


.

The sum of the responses over a level is denoted as, 
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while the level mean is denoted as, 
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The grand sum of all responses is denoted as, 
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while the overall mean of the data is,  
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The analysis is broken down into “sums of squares” that measure the variability due to the levels and due to the errors. The general form is, 
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where, 
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= the total sum of squares,
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= the sum of squares due to the levels, and
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= the sum of squares due to the errors.

The equation for the total sum of squares, which is a measure of the overall variability of the data, is,
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The equation for the sum of squares for the levels, which measures the variability due to the levels or factors, is,
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can be calculated by subtracting [image: image59.png]NNy



from [image: image60.png]R T



, or [image: image61.png]) 7



= [image: image62.png]R T



- [image: image63.png]NNy



. The [image: image64.png]) 7



term measures the variability of the data due to random error.

There are degrees of freedom terms associated with each of the sums of squares. The degrees of freedom are given by, 
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Mean square values are calculated by dividing the sum of square terms for the level and error by their respective degrees of freedom values. These values represent the variance of the level and error components of the data. Mean squares values for levels and errors are, 
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4.3.2. Two-Way Analysis of Variance 

An extension to the one-way analysis of variance. There are two independent variables. There are three sets of hypothesis with the two-way ANOVA. The first null hypothesis is that there is no interaction between the two factors. The second null hypothesis is that the population means of the first factor are equal. The third null hypothesis is that the population means of the second factor are equal. 

Output
The general format for output for this type of analysis is an ANOVA table, which contains basic information about the analysis:
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Example

In a study of species diversity in four African lakes the following data were collected on the number of different species caught in six catches from each lake.

[image: image68.emf]
The pooled estimate of variance, S2, is 100.9. The standard error of the difference between any two of the above means is s.e.d. = (2S2/6) = 5.80
The usual analysis of variance (ANOVA) will look like:

[image: image69.emf]
The F-value and p-value are analogous to the t-value and p-value in the t-test for two independent samples. Indeed, the two-sample case is a special case of the one-way ANOVA, and the significance level is the same, irrespective of which test is used. With more than two groups a significant F-value, as here, indicates there is a difference somewhere amongst the groups considered, but does not say where – it is not an end-result of a scientific investigation. The analysis then usually continues with an examination of the treatment means that are shown with the data above. Almost always a sensible analysis will look also at “contrasts” whose form depends on the objectives of the study. For example if lakes in the Tanzanian sector were to be compared with the Malawian lakes, we could look at the difference in the mean of the first two treatments, compared with the mean of the third and fourth. If this difference were statistically significant, then the magnitude of this difference, with its standard error, would be discussed in the reporting the results. In the analysis of variance a “non-significant” F-value may indicate there is no effect. Care must be taken that the overall F-value does not conceal one or more individual significant differences “diluted” by several not-very-different groups. This is not a serious problem; the solution is to avoid being too simplistic in the interpretation. Thus again researchers should avoid undue dependence on an arbitrary “cut-off” p-value, like 5%.

Learning activities

Questions on the topic for practice
Demonstration by use of SAS and Excel  

Summary
Analysis of Variance statistics also belong to the parametric test family, because ANOVA has some assumptions. When data meets these specific assumptions, then ANOVA is a more powerful test than the nonparametric test. It is widely used to make statistical decisions by setting the level of significance. F-distribution is a major component of ANOVA 
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TOPIC 5       CHI-SQUARE (χ2)
Introduction

The statistical procedures that you have reviewed thus far are appropriate only for variables at the interval and ratio levels of measurement. The chi-square (χ2) test can be used to evaluate a relationship between two nominal or ordinal variables. It is one example of a non-parametric test. Non-parametric tests are used when assumptions about normal distribution in the population cannot be met or when the level of measurement is ordinal or less. These tests are less powerful than parametric tests. The Chi-Square test is known as the test of goodness of fit and Chi-Square test of Independence. In the Chi-Square test of Independence, goodness of fit frequency of one nominal variable is compared with the theoretical expected frequency. In the Chi-Square test of Independence, the frequency of one nominal variable is compared with different values of the second nominal variable. The Chi-square test of Independence is used when we have two nominal variables. The Chi-square test of Independence data may be in the R*C form. In the Chi-Square test of Independence, R is the row and C is the column. In the Chi-Square test of Independence, the test variable may be more than two.
Learning outcome

At the end of this topic, students are expected to:

· Know how basic  concepts in Chi-square statistics

· Interpret chi-square formula
· Understand steps in the performing chi-square analysis
· Subject basic statistical data to chi-square analysis
Key terms

Ordinal variable

Nominal variable

Non-parametric test
5.1. Procedure in Chi-Square test of Independence:

To perform the Chi-Square test of Independence, first we have to calculate the expected value of the two nominal variables. We can calculate the expected value of the two nominal variables by using this formula:
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Where
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= expected value for Chi-Square test of Independence
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= Sum of the ith column in the Chi-Square test of Independence
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= Sum of the kth column in the Chi-Square test of Independence

N = total number in the Chi-Square test of Independence

After calculating the expected value, we will apply the following formula to calculate the value of the Chi-Square test of Independence:
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= Chi-Square test of Independence
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= Observed value of two nominal variables for the Chi-Square test of Independence
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= Expected value of two nominal variables for the Chi-Square test of Independence

5.1.1. DF in Chi-Square test of Independence: In the Chi-Square test of Independence, the degree of freedom is calculated by using the following formula:
DF = (r-1)(c-1)
Where
DF = Degree of freedom for the Chi-Square test of Independence
r = number of rows in the Chi-Square test of Independence
c = number of columns in the Chi-Square test of Independence

5.1.2. Hypothesis for chi-square test of independence
Null hypothesis: In Chi-Square test of Independence, null hypothesis assumes that there is no association between the two variables.

Alternative hypothesis: In Chi-Square test of Independence, alternative hypothesis assumes that there is an association between the two variables.

Hypothesis testing: It is the same for the Chi-Square test of Independence as it is for other tests like ANOVA, t-test, etc. If the calculated value of the Chi-Square test is greater than the table value, we will reject the null hypothesis. If the calculated value is less, then we will accept the null hypothesis. 
5.2. Chi-Square Distribution

5.2.1. F-distribution 

The ratio of two independent chi-square variables divided by their respective degrees of freedom. If the population variances are equal, this simplifies to be the ratio of the sample variances. The null hypothesis for the one way ANOVA will be that all population means are equal, the alternative hypothesis is that at least one mean is different. Suppose we conduct the following statistical experiment. We select a random sample of size n from a normal population, having a standard deviation equal to σ. We find that the standard deviation in our sample is equal to s. Given these data, we can compute a statistic, called chi-square, using the following equation: 
Χ2 = [(n - 1) * s2 ] / σ2
If we repeated this experiment an infinite number of times, we could obtain a sampling distribution for the chi-square statistic. The chi-square distribution is defined by the following probability density function: Y = Y0 * ( Χ2 ) ( v/2 - 1 ) * e-Χ2 / 2 

where Y0 is a constant that depends on the number of degrees of freedom, Χ2 is the chi-square statistic, v = n - 1 is the number of degrees of freeedom, and e is a constant equal to the base of the natural logarithm system (approximately 2.71828). Y0 is defined, so that the area under the chi-square curve is equal to one. 
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In the figure above, the red curve shows the distribution of chi-square values computed from all possible samples of size 3, where degrees of freedom is n - 1 = 3 - 1 = 2. Similarly, the green curve shows the distribution for samples of size 5 (degrees of freedom equal to 4); and the blue curve, for samples of size 11 (degrees of freedom equal to 10). 

5.2.2. Properties of chi-square distribution: 

· The mean of the distribution is equal to the number of degrees of freedom: μ = v. 

· The variance is equal to two times the number of degrees of freedom: σ2 = 2 * v 

· When the degrees of freedom are greater than or equal to 2, the maximum value for Y occurs when Χ2 = v - 2. 
5.2.3. Cumulative Probability and the Chi-Square Distribution

The chi-square distribution is constructed so that the total area under the curve is equal to 1. The area under the curve between 0 and a particular value of a chi-square statistic is the cumulative probability associated with that statistic. For example, in the figure below, the shaded area represents the cumulative probability for a chi-square equal to A. 
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Summary
The chi-square (χ2) test is used to determine whether there is a significant difference between the expected frequencies and the observed frequencies in one or more categories. Does the number of individuals or objects that fall in each category differ significantly from the number you would expect? Is this difference between the expected and observed due to sampling error, or is it a real difference?
Learning activities
Questions on the topics covered
Use of SPSS will be demonstrated 
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 6.0 REGRESSION ANALYSIS
Introduction

Regression analysis is a statistical technique that is widely used for research. Regression analysis is used to predict the behavior of the dependent variables, based on the set of independent variables. In regression analysis, dependent variables can be metric or non-metric and the independent variable can be metric, categorical, or both a combination of metric and categorical. These days, researchers are using regression analysis in two manners, for linear regression analysis and for non-linear regression analysis. Linear regression analysis is further divided into two types, simple linear regression analysis and multiple linear regression analysis. In simple linear regression analysis, there is a dependent variable and an independent variable. In multiple linear regressions analysis, there is a dependent variable and many independent variables. Non- linear regression analysis is also of two types, simple non-linear regression analysis and multiple non-linear regression analysis. When there is a non-liner relationship between the dependent and independent variables and there is a dependent and an independent variable, then it said to be simple non-liner regression analysis. When there is a dependent variable and two or more than two independent variables, then it said to be multiple non-linear regression.
Learning outcomes

Upon completing this topic, the students will be able to:

· Describe basic concepts of regression
· Appropriately use regression principles in different research fields

· Apply regression models in research design
· Perform regression analysis and interpret the results
Key Terms: Regression, Intercept, Slope, Curve it, Polynomial, Best fit line 
6.1. Linear regression 

Linear regression is the most basic and commonly used predictive analysis. Regression estimates are used to describe data and to explain the relationship between one dependent variable and one or more independent variables.

At the center of the regression analysis is the task of fitting a single line through a scatter plot. The simplest form with one dependent and one independent variable is defined by the formula y = a + b*x. 

Sometimes the dependent variable is also called endogenous variable, prognostic variable or regressand. The independent variables are also called exogenous variables, predictor variables or regressors. 

However Linear Regression Analysis consists of more than just fitting a linear line through a cloud of data points. It consists of 3 stages – (1) analyzing the correlation and directionality of the data, (2) estimating the model, i.e., fitting the line, and (3) evaluating the validity and usefulness of the model.

Uses of Linear Regression Analysis
1). Might be used to identify the strength of the effect that the independent variable(s) have on a dependent variable. Typical questions are what is the strength of relationship between dose and effect, sales and marketing spend, age and income. 

 2). It can be used to forecast effects or impacts of changes. That is regression analysis helps us to understand how much will the dependent variable change, when we change one or more independent variables. Typical questions are how much additional Y do I get for one additional unit X.

3). Regression analysis predicts trends and future values. The regression analysis can be used to get point estimates. Typical questions are what will the price for gold be in 6 month from now? What is the total effort for a task X?

Assumptions: 

1. There is normal distribution.
2. There is a linear relationship between the dependent and independent variable.
3. There is no multicollinearity between the independent variables or no exact correlation between the independent variable.
4. There is no autocorrelation.
5. The means lagged value of the regression variable does not affect the current value.
6. The homoscedasticity or variance between all the independent variables is equal. 
Simple linear regression is a measure of linear association that investigates straight-line relationships between a continuous dependent variable and an independent variable. It is explained best through regression equation
The Regression Equation (Y = α + βX )

Y = the continuous dependent variable

X = the independent variable (can be a categorical dummy variable)

α = the Y intercept (regression line intercepts Y axis)

β = the slope of the coefficient (rise over run)
Parameter Estimate Choices

β is estimated coefficient of the strength and direction of the relationship between the independent (IV) and dependent variable (DV).

α  (Y intercept) is a fixed point that is considered a constant (how much Y can exist without X)

Standardized Regression Coefficient (β)

Estimated coefficient of the strength of relationship between the IV and DV variables.

Expressed on a standardized scale where higher absolute values indicate stronger relationships (Scale ranges is from -1 to 1).
Parameter Estimate Choices

Raw regression estimates (b1)

Raw regression weights have the advantage of retaining the scale metric—which is also their key disadvantage.

If the purpose of the regression analysis is forecasting, then raw parameter estimates must be used. The researcher is interested only in prediction.

Standardized regression estimates (β1)

Standardized regression estimates have the advantage of a constant scale.
Standardized regression estimates should be used when the researcher is testing explanatory hypotheses
6.1.1. Predictive Methods 

With the exception of the mean and standard deviation, linear regression is possibly the most widely used of statistical techniques. This because any of the problems that we encounter in research settings require that we quantitatively evaluate the relationship between two variables for predictive purposes. By predictive, I mean that the values of one variable depend on the values of a second. We might be interested in calibrating an instrument such as a sprayer pump.  We can easily measure the current or voltage that the pump draws, but specifically want to know how much fluid it pumps at a given operating level.  Or we may want to empirically determine the production rate of a chemical product given specified levels of reactants. 

Linear regression, which is the natural extension of correlation analysis, provides a great starting point toward these objectives. 
Terms for predictive analysis: 
Curve fit - This is perhaps the most general term for describing a predictive relationship between two variables, because the "curve" that describes the two variables is of unspecified form. 
Polynomial fit - A polynomial fit describes the relationship between two variables as a mathematical series. Thus a first order polynomial fit (a linear regression) is defined as  y = a + bx. A second order (parabolic) fit is y= a + bx + cx^2, a third order (spline) fit is y = a + bx + cx^2 + dx^3, and so on... 

Best fit line - The equation that best describes the y or dependent variable as a function of the x or independent. 

Linear regression and least squares linear regression - This is the method of interest.  The objective of linear regression analysis is to find the line that minimizes the sum of squared deviations of the dependent variable about the "best fit" line.  Because the method is based on least squares, it is said to be a BLUE method, a Best Linear Unbiased Estimator. 
6.1.2. Defining the Regression Model 
We've already stated that the general form of the generalized linear regression is: y= a + bx. The coefficient "a" is a constant called the y-intercept of the regression. The coefficient "b" is called the "slope" of the regression. It describes the amount of change in y that corresponds to a given change in x. 
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The slope of the linear regression can be calculated in a number of ways: 

Specifically, the slope is defined as the summed cross product of the deviations of x and y from their respective means, divided by the sum of squares of the deviations x from it's mean.  The second relationship above is useful if these quantities have to be calculated by hand.  The standard error values of the slope and intercept can are mainly used to compute the 95% confidence intervals. If you accept the assumptions of linear regression, there is a 95% chance that the 95% confidence interval of the slope contains the true value of the slope, and that the 95% confidence interval for the intercept contains the true value of the intercept.
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It's interesting to note that the slope in the generalized case is equal to the linear correlation coefficient scaled by the ratio of the standard deviations of y and x: 

[image: image181.png]


This explicitly defines the relationship between linear correlation analysis and linear regression. Notice that in the case of standardized regression, where sy and sx = 1, 
From this definition, it should be clear that the best fit line passes through the mean values for x and y. 

Assumptions 

There are several assumptions that must be met for the linear regression to be valid: 

· The random variables must both be normally distributed (bivariate normal) and linearly related. 

· The x values (independent variable) must be free of error. 

· The variance of y (the dependent variable) as a function of x must be constant. This is referred to as homoscedasticity. 
6.1.3. Evaluating the Model Fit 

The scatter of the y values about y estimates (denoted yhat) based on the best fit line is often referred to as the "standard error of the regression": 
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Notice that two degrees of freedom are lost in the denominator: one for the slope and one for the intercept. A more descriptive definition - and strictly correct name - for this statistic is the root mean square error (denoted RMS or RMSE). 
How much variance is explained? 
[image: image182.png]sy - niy)?
(n— 1)sxsy

N z(x—x’)(y—y)]z :
(n- 1)sxsy




Just as in linear correlation analysis, we can explicitly calculate the variance explained by the regression model: 

You should recognize this definition as identical to the one used in correlation analysis. This relationship can also be written in terms of the z-scores of x and y.  
Determining statistical significance 
As with the other statistics that we have studied the slope and intercept are sample statistics based on data that includes some random error, e: y + e = a + b x. We are of course actually interested in the true population parameters which are defined without error.  y = a + b x. How do we assess the significance level of the model? In essence we want to test the null hypothesis that b=0 against one of three possible alternative hypotheses: b>0, b<0, or b not = 0.

There are at least two ways to determine the significance level of the linear model. Perhaps the easiest method is to calculate r, and then determine significance based on the value of r and the degrees of freedom using a table for significance of the linear or product moment correlation coefficient. This method is particularly useful in the standardized regression case when b=r.  

The significance level of b, can also be determined by calculating a confidence interval for the slope. Just as we did in earlier hypothesis testing examples, we determine a critical t-value based on the correct number of degrees of freedom and the desired level of significance. It is for this reason that the random variables x and y must be bivariate normal. 
For the linear regression model the appropriate degrees of freedom is always df=n-2. The level of significance of the regression model is determined by the user, the 95% or 99% levels are generally used.  The standard error values of the slope and intercept can be hard to interpret, but their main purpose is to compute the 95% confidence intervals. If you accept the assumptions of linear regression, there is a 95% chance that the 95% confidence interval of the slope contains the true value of the slope, and that the 95% confidence interval for the intercept contains the true value of the intercept.
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The confidence interval is then defined as the product of the critical t-value and Sb, the standard error of the slope: 
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where Sb is defined as: 

Interpretation.  
If there is a significant slope, then b will be statistically different from zero.  So if b is greater than (t-crit)*Sb, the confidence interval does not include zero. We would thus reject the null hypothesis that b=0 at the pre-determined significance level.  As (t-crit)*Sb becomes smaller, the greater our certainty in beta, and the more accurate the prediction of the model. 

If we plot the confidence interval on the slope, then positive and negative limits of the confidence interval of the slope plot as lines that intersect at the point defined by the mean x,y pair for the data set. In effect, this tends to underestimate the error associated with the regression equation because it neglects the role of the intercept in controlling the position of the line in the cartesian plane defined by the data. Fortunately, we can take this into account by calculating a confidence interval on line.

6.1.4. Confidence Interval for the regression line 

[image: image185.png]¥ (teni)S,,



Just as we did in the case for the confidence interval on the slope, we can write this out explicitly as a confidence interval for the regression line, that is defined as follows: 
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The degrees of freedom is still df= n-2, but now the standard error of the regression line is defined as: 

Because values that are further from the mean of x and y have less probability and thus greater uncertainty, this confidence interval is narrowest near the location of the joint x and y mean (the centroid or center of the data distribution), and flares out at points further from centroid. While the confidence interval is curvilinear, the model is in fact linear. 
Confidence Interval for future predictions 
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Just as we did in the case for the confidence interval on the slope, we can write this out explicitly as a confidence interval on the future predictions, yhat that is defined as follows: 
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The degrees of freedom is still df= n-2, but now the standard error of the y predictions is defined as: 

This is the broadest of the three confidence intervalues that we have considered. Notice that 1+(1/n) is equal to (n+1)/n.  This confidence interval is still slightly curvilinear. but because this confidence interval is scaled by (n+1)/n, rather than 1/n, as was the case for the confidence interval of the line, there is considerably less curvature to it.
6.2.   Multiple Regression

Understanding variables and their properties is essential to understanding statistical analysis. A constant has only one unvarying value under all circumstances for example ( and c = speed of light. A random variable can be qualitative (descriptive with no intrinsic numerical value) or quantitative (with intrinsic numerical value). Qualitative variables can be nominal (no specific order of magnitude), ordinal (specific order) or ranked. Choice of the technique of statistical analysis depends on the type of variable. Many mistakes in data analysis arise from applying the wrong statistical technique. Two statistical techniques that are commonly used in data analysis are multiple regression and Biveriate analysis. Both techniques investigate associations among the variables. The basis of a multiple regression is to assess the relationship between one dependent variable and a set of independent or predictor variables. On the other hand bivariate, analysis helps compare and control two or more related variables in situations where quality depends on the combine effect of these variables.

In a standard multiple regression we have one continuous Y variable and two or more continuous X variables.  Actually, the X variables may include dichotomous variables and/or categorical variables that have been “dummy coded” into dichotomous variables. The goal is to construct a linear model that minimizes error in predicting Y.  That is, we wish to create a linear combination of the X variables that is maximally correlated with the Y variable. We obtain standardized regression coefficients (( weights  (  
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) that represent how large an “effect” each X has on Y above and beyond the effect of the other X’s in the model.  We may use some a priori hierarchical structure to build the model (enter first X1, then X2, then X3, etc., each time seeing how much adding the new X improves the model, or, start with all X’s, then first delete X1, then delete X2, etc., each time seeing how much deletion of an X affects the model)As the number of predictor variables increases, the amount of time to investigate the different equations also increases. Therefore, certain approaches are helpful in selecting and testing predictors to increase the efficiency of analysis.

Entry Methods of the Variables

The standard method of entry is simultaneous (also known as the enter method); all variables are entered into the equation at the same time. This is an appropriate analysis when dealing with a small set of predictors and when the researcher does not know which variables will create the best prediction equation.  Each predictor is assessed as though it were entered after all the other independent variables were entered, and assessed by what it offers to the prediction of the dependent variable that is different from the predictions offered by the other variables entered into the model.

Selection Methods in Multiple Regression

Selection, on the other hand, allows for the construction of an optimal regression equation along with investigation into specific predictor variables. The aim of selection is to reduce the set of predictor variables to the number necessary that accounts for nearly as much of the variance as is accounted for by the total set.  In essence, selection helps to determine the level of importance of each predictor variable.  It also assists in assessing the effects once the other predictor variables are statistically eliminated. The circumstances of the study, along with the nature of the research questions guide the selection of predictor variables.

Four selection procedures are used to yield the most appropriate regression equation: forward selection, backward elimination, stepwise selection, and blockwise selection. The first three of these four procedures are considered statistical regression methods. Many times researchers use sequential regression (hierarchical or blockwise) entry methods that do not rely upon statistical results for selecting predictors. Sequential entry allows the researcher greater control of the regression process. Items are entered in a given order based on theory, logic or practicality and appropriate when the researcher has an idea as to how predictors may impact the dependent variable and how predictors are correlated with one another.

Statistical Regression Selection Methods of Entry 
Forward selection begins with an empty equation. Predictors are added one at a time beginning with the predictor with the highest correlation with the dependent variable. Variables of greater theoretical importance are entered first. Once in the equation, the variable remains there.

Backward elimination (or backward deletion) is the reverse process. All the variables are entered into the equation first and each one is deleted one at a time if they do not contribute to the regression equation.

Stepwise selection is considered a variation of the previous two methods. Stepwise selection involves analysis at each step to determine the contribution of the predictor variable entered previously in the equation. In this way it is possible to understand the contribution of the previous variables now that another variable has been added.  Variables can be retained or deleted based on their statistical importance.

Sequential Regression Selection Method of Entry
Blockwise selection is a version of forward selection that is achieved in blocks or sets. The predictors are grouped into blocks based on psychometric consideration or theoretical reasons and a stepwise selection is applied. Each block is applied separately while the other predictor variables are ignored. Variables can be removed when they do not contribute to the prediction. In general, the predictors included in the blocks will be intercorrelated. Also, the order of entry has an impact on which variables will be selected; those that are entered in the earlier stages have a better chance of being retained than those entered at later stages.

Essentially, the multiple regression selection process enables the researcher to obtain a reduced set of variables from a larger set of predictors, eliminating unnecessary predictors, simplifying data, and enhancing predictive accuracy.  Two criterions are used to achieve the best set of predictors; these include meaningfulness to the situation and statistical significance. By entering variables into the equation in a given order, confounding variables can be investigated and variables that are highly correlated can be combined into blocks.
6.3. Time series/trend Analysis
Time series data refers to observation of a particular variable over time. These type of data allows the analyst to view the evolution of a variable over a period of time.For instance:Sales, unemployment rate, inflation rate, cost of production, price of oil, interest rates, number of people going to an adventure park,consumption of gasoline

6.3.1. Components of a time series

Any time series can contain some or all of the following components:

1. Trend (T)

2. Cyclical (C)

3. Seasonal (S)

4. Irregular (I)

These components may be combined in different ways. It is usually assumed that they are multiplied or added, i.e.,

yt = T * C * S * I

yt = T + C + S + I

To correct for the trend in the first case one divides the first expression by the trend (T). In the second case it is subtracted.

Trend component

The trend is the long term pattern of a time series. A trend can be positive or negative depending on whether the time series exhibits an increasing long term pattern or a decreasing long term pattern. If a time series does not show an increasing or decreasing pattern then the series is stationary in the

mean.
Cyclical component

Any pattern showing an up and down movement around a given trend is identified as a cyclical pattern. The duration of a cycle depends on the type of business or industry being analyzed.

Seasonal component

Seasonality occurs when the time series exhibits regular uctuations during the same month (or months) every year, or during the same quarter every year. For instance, retail sales peak during the month of December.

Irregular component

This component is unpredictable. Every time series has some unpredictable component that makes it a random variable. In prediction, the objective is to \model" all the components to the point that the only component that remains unexplained is the random component

6.3.2. Global and Local Trends
Global Trends

Using a simple linear trend model, the global trend of a variable can be estimated. This way to proceed is very simplistic and assumes that the pattern represented by the linear trend remains fixed over the observed span of time of the series. A simple linear trend model is represented by the following formulation:
 [image: image82.emf]
Rarely a model like this is useful in practice. A more realistic model involves local trends.

 Local trend

A more modern approach is to consider trends in time series as variable. A variable trend exists when the trend changes in an unpredictable way. Therefore, it is considered to be stochastic

Forecasting

Forecasting (or prediction) refers to the process of generating future values of a particular event. Business forecasting involves the use of quantitative methods to obtain estimations of future values of a variable (or variables). These quantitative methods include the application of some statistical procedure. 

Examples of forecasts at the firm level, and those related with some aspect of the economy follow:

A. Within the firm

(a) Sales for the next 6 months.

(b) Levels of inventories for the next 5 weeks.

(c) Costs and revenues

B. The economy

(a) The level of activity at the state or national levels. For instance, the unemployment rate, or the level of capacity utilization.

(b) Prices of critical inputs (labor, fuel)

(c) Interest rates
6.3.3. Time series methods

Time series methods or models makes reference to models use in forecasting where no "explanatory" variables are involved. Hence, the only source of information is the past values of the variable of interest.

The main objective of these methods is forecasting future values. These models include smoothing methods (moving averages, single and double exponential smoothing, and Holt-Winters exponential smoothing).

Moving averages

A moving average is a method to obtain a smoother picture of the behavior of a series. The objective of applying moving averages to a series is to eliminated the irregular component, so that the process is clearer and easier to interpret. A moving average can be calculated for the purpose of smoothing the original series, or to obtain a forecast. In the first case a \centered" moving average is calculated. In the second case, the forecast for period n is calculated with the m previous values, where m is the number of periods (the order of the moving average) that enter the calculation.

Systematic Pattern and Random Noise

As in most other analyses, in time series analysis it is assumed that the data consist of a systematic pattern (usually a set of identifiable components) and random noise (error) which usually makes the pattern difficult to identify. Most time series analysis techniques involve some form of filtering out noise in order to make the pattern more salient.

Two General Aspects of Time Series Patterns
Most time series patterns can be described in terms of two basic classes of components: trend and seasonality. The former represents a general systematic linear or (most often) nonlinear component that changes over time and does not repeat or at least does not repeat within the time range captured by our data (e.g., a plateau followed by a period of exponential growth). The latter may have a formally similar nature (e.g., a plateau followed by a period of exponential growth), however, it repeats itself in systematic intervals over time. Those two general classes of time series components may coexist in real-life data. For example, sales of a company can rapidly grow over years but they still follow consistent seasonal patterns (e.g., as much as 25% of yearly sales each year are made in December, whereas only 4% in August).

This general pattern is well illustrated in a "classic" Series G data set (Box and Jenkins, 1976, p. 531) representing monthly international airline passenger totals (measured in thousands) in twelve consecutive years from 1949 to 1960 (see example data file G.sta and graph above). If you plot the successive observations (months) of airline passenger totals, a clear, almost linear trend emerges, indicating that the airline industry enjoyed a steady growth over the years (approximately 4 times more passengers traveled in 1960 than in 1949). At the same time, the monthly figures will follow an almost identical pattern each year (e.g., more people travel during holidays than during any other time of the year). This example data file also illustrates a very common general type of pattern in time series data, where the amplitude of the seasonal changes increases with the overall trend (i.e., the variance is correlated with the mean over the segments of the series). This pattern which is called multiplicative seasonality indicates that the relative amplitude of seasonal changes is constant over time, thus it is related to the trend.

6.3.4. Trend Analysis
There are no proven "automatic" techniques to identify trend components in the time series data; however, as long as the trend is monotonous (consistently increasing or decreasing) that part of data analysis is typically not very difficult. If the time series data contain considerable error, then the first step in the process of trend identification is smoothing.

Smoothing. Smoothing always involves some form of local averaging of data such that the nonsystematic components of individual observations cancel each other out. The most common technique is moving average smoothing which replaces each element of the series by either the simple or weighted average of n surrounding elements, where n is the width of the smoothing "window" (see Box & Jenkins, 1976; Velleman & Hoaglin, 1981). Medians can be used instead of means. The main advantage of median as compared to moving average smoothing is that its results are less biased by outliers (within the smoothing window). Thus, if there are outliers in the data (e.g., due to measurement errors), median smoothing typically produces smoother or at least more "reliable" curves than moving average based on the same window width. The main disadvantage of median smoothing is that in the absence of clear outliers it may produce more "jagged" curves than moving average and it does not allow for weighting.

Two Main Goals

There are two main goals of time series analysis: 

(a) Identifying the nature of the phenomenon represented by the sequence of observations

(b) Forecasting (predicting future values of the time series variable). Both of these goals require that the pattern of observed time series data is identified and more or less formally described. Once the pattern is established, we can interpret and integrate it with other data (i.e., use it in our theory of the investigated phenomenon, e.g., seasonal commodity prices). Regardless of the depth of our understanding and the validity of our interpretation (theory) of the phenomenon, we can extrapolate the identified pattern to predict future events.
Summary
Regression analysis quantifies a relationship between a predictor variable and a criterion variable by the coefficient of correlation r, coefficient of determination r², and the standard regression coefficient β. Multiple regression analysis expresses a relationship between a set of predictor variables and a single criterion variable by the multiple correlation R, multiple coefficient of determination R², and a set of standard partial regression weights β1, β2, etcRegression analysis quantifies a relationship between a predictor variable and a criterion variable by the coefficient of correlation r, coefficient of determination r², and the standard regression coefficient β. Multiple regression analysis expresses a relationship between a set of predictor variables and a single criterion variable by the multiple correlation R, multiple coefficient of determination R², and a set of standard partial regression weights β1, β2, etc
Learning Activities
Exercise

SPSS software will be used
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7.0. CORRELATIONS AND PARTIAL CORRELATIONS
Introduction

There are many types of research questions that require us to understand the relationship between two variables. We might want to study how rainfall in a catchment basin is related to regional streamflow. We might want to study the relationship between some measure of soil quality and crop yield. We might want to know how large scale climate processes such as the El Nino-Southern Oscillation (ENSO) affect temperature and precipitation in remote regions of the globe. Or in a paleoceanographic study, we may be interested in one variable, (e.g. phosphate content of an ancient oceans), but may only be able to measure a related or proxy variable, such as the Cd content of shells from fossil benthic foraminifera. Correlational methods can also be applied to observational data to explore the relationships between variable. 
Learning outcomes

Upon completing this topic, the students will be able to:

· Describe the basic concepts in correlation statistics
· Differentiate different types of correlations
· Apply correlation techniques in statistical analysis
Key terms
Description - by learning how two variables are related in a quantitative way we learn something about the processes that relate them. 

Common variance - Variables that are correlated, covary.  This explains how to determine how much of the variance in one variable in explained by its correlation to another variable. 
Prediction - If a correlation is strong enough, we may be able to use it as a predictive statistical tool. 

Linear vs. Non-Linear - a scatter plot of two linearly correlated variables will follow a straight line with variable degree of noise. In contrast, if two variables follow some arbitrary function they exhibit a non-linear correlation. 

Positive vs. negative -  If high values of one variable occur in conjunction with high values of another variable they are positively correlated.  If high values on one variable occur with 
low values of another, they are said to be negatively or inversely correlated. 

Orthogonal - two variables that are unrelated or uncorrelated are said to be orthogonal. 

Strong vs. weak - if much of the variability is explained or shared between two variables, they are said to have a strong correlation. Weak correlations occur between variables that share little common variance. 
  
7.1. The correlation coefficient, (r) 

An important statistic for bivariate numerical data is the correlation coefficient. The sample correlation coefficient of two variables x and y is denoted r and is defined by either of the equivalent formulas. The correlation coefficient r for the data,

x -2 -1 0 1 2

y -4  1 0 1 4
is zero, even though x and y satisfy the equation, y = x2.
There are a number of ways that have been devised to quantify the correlation between two variables. We will be primarily concerned with the simple linear correlation coefficient.  This statistic is also referred to as the product moment correlation coefficient, or as Pearson's correlation coefficient.  For simplicity, we will refer to it as the correlation coefficient. The sample correlation coefficient is denoted with the letter r, the true population correlation is denoted with the greek symbol, rho. 

The linear correlation coefficient is defined as: 
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The associated degrees of freedom for the linear correlation coefficient is df = n-2. 

There are two primary assumptions behind the use of the linear correlation coefficient: 
1). The variables must be related in a linear way. 

2). The variables must both be normal in distribution. 

In fact, for the two variables to be correlated, they must exhibit a bivariate normal distribution.  This second constraint makes sense when you consider the third way that r is written out above.  It states that the r value is equal to the sum of the product of the observed z-scores for the variables x and y, normalized by n-1 observations.  (This is also where the term product moment correlation coefficient arises - The mean is referred to as the first product moment, and the z-scores relate each observation to the mean) 

7.2. Coefficient of determination, (R2)
In statistics, the coefficient of determination, R2, is used in the context of statistical models whose main purpose is the prediction of future outcomes on the basis of other related information. It is the proportion of variability in a data set that is accounted for by the statistical model.  It provides a measure of how well future outcomes are likely to be predicted by the model.

There are several different definitions of R2 which are only sometimes equivalent. One class of such cases includes that of linear regression. In this case, R2 is simply the square of the sample correlation coefficient between the outcomes and their predicted values, or in the case of simple linear regression, between the outcome and the values being used for prediction. In such cases, the values vary from 0 to 1. Important cases where the computational definition of R2 can yield negative values, depending on the definition used, arise where the predictions which are being compared to the corresponding outcome have not derived from a model-fitting procedure using those data.

7.2.1. Definitions
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The better the linear regression (on the right) fits the data in comparison to the simple average (on the left graph), the closer the value of R2 is to one. The area of the blue squares represent the squared residuals with respect to the linear regression. The area of the red squares represent the squared residuals with respect to the average value.

A data set has values yi, each of which has an associated modelled value fi (also sometimes referred to as ŷi). Here, the values yi are called the observed values and the modelled values fi are sometimes called the predicted values.

The "variability" of the data set is measured through different Sums of squares
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the total sum of squares (proportional to the sample variance);

the regression sum of squares, also called the explained sums of squares.
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, the sum of squares of residuals, also called the residual sums of square
In the above [image: image85.png]


is the mean of the observed data:
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where n is the number of observations.

The notations SSR and SSE should be avoided, since in some texts their meaning is reversed to Residual sum of squares and Explained sum of squares, respectively.

The most general definition of the coefficient of determination is
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 7.2.2. (R2) relation to variance
As unexplained variance
In a general form, R2 can be seen to be related to the unexplained variance, since the second term compares the unexplained variance (variance of the model's errors) with the total variance (of the data).

 As explained variance

In some cases the total sum of squares equals the sum of the two other sums of squares defined above,
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When this relation does hold, the above definition of R2 is equivalent to
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In this form R2 is given directly in terms of the explained variace: it compares the explained variance (variance of the model's predictions) with the total variance (of the data).

This partition of the sum of squares holds for instance when the model values ƒi have been obtained by linear regression. A milder sufficient conditions reads as follows: The model has the form
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where the qi are arbitrary values that may or may not depend on i or on other free parameters (the common choice qi = xi is just one special case), and the coefficients α and β are obtained by minimizing the residual sum of squares.

This set of conditions is an important one and it has a number of implications for the properties of the fitted residuals and the modelled values. In particular, under these conditions:
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  As squared correlation coefficient

Similarly, after least squares regression with a constant+linear model, R2 equals the square of the correlation coefficient between the observed and modeled (predicted) data values.

Under general conditions, an R2 value is sometimes calculated as the square of the correlation coefficient between the original and modeled data values. In this case, the value is not directly a measure of how good the modeled values are, but rather a measure of how good a predictor might be constructed from the modeled values (by creating a revised predictor of the form α + βƒi). According to Everitt (2002, p. 78), this usage is specifically the definition of the term "coefficient of determination": the square of the correlation between two (general) variables.

7.2.3. Interpretation (R2)
R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.

Values of R2 outside the range 0 to 1 can occur where it is used to measure the agreement between observed and modelled values and where the "modelled" values are not obtained by linear regression and depending on which formulation of R2 is used. If the first formula above is used, values can never be greater than one. If the second expression is used, there are no constraints on the values obtainable.

In many (but not all) instances where R2 is used, the predictors are calculated by ordinary least-squares regression: that is, by minimizing SSerr. In this case R-squared increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2. The explanation of this statistic is almost the same as R2 but it penalizes the statistic as extra variables are included in the model. For cases other than fitting by ordinary least squares, the R2 statistic can be calculated as above and may still be a useful measure. If fitting is by weighted least squares or generalized least squares, alternative versions of R2 can be calculated appropriate to those statistical frameworks, while the "raw" R2 may still be useful if it is more easily interpreted. Values for R2 can be calculated for any type of predictive model, which need not have a statistical basis.
R² does not tell whether:

· the independent variables are a true cause of the changes in the dependent variable;

· Omitted-variable bias exists;

· The correct regression was used;

· The most appropriate set of independent variables has been chosen;

· There is collinearity present in the data on the explanatory variables;

· The model might be improved by using transformed versions of the existing set of independent variables.

In a 
Linear Model

Consider a linear model of the form
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where, for the ith case, Yi is the response variable, [image: image93.png]


are p regressors, and [image: image94.png]


is a mean zero error term. The quantities [image: image95.png]


are unknown coefficients, whose values are determined by least squares. The coefficient of determination R2 is a measure of the global fit of the model. Specifically, R2 is an element of [0, 1] and represents the proportion of variability in Yi that may be attributed to some linear combination of the regressors in X.

R2 is often interpreted as the proportion of response variation "explained" by the regressors in the model. Thus, R2 = 1 indicates that the fitted model explains all variability in y, while R2 = 0 indicates no 'linear' relationship (for straight line regression, this means that the straight line model is a constant line (slope=0, intercept=[image: image96.png]


) between the response variable and regressors. An interior value such as R2 = 0.7 may be interpreted as follows: "Approximately seventy percent of the variation in the response variable can be explained by the explanatory variable. The remaining thirty percent can be explained by unknown, inherent variability."

A caution that applies to R2, as to other statistical descriptions of correlation and association is that "correlation does not imply causation." In other words, while correlations may provide valuable clues regarding causal relationships among variables, a high correlation between two variables does not represent adequate evidence that changing one variable has resulted, or may result, from changes of other variables.

In case of a single regressor, fitted by least squares, R2 is the square of the Pearson product-moment correlation coefficient relating the regressor and the response variable. More generally, R2 is the square of the correlation between the constructed predictor and the response variable.

Inflation of R2
In least squares regression, R2 is weakly increasing in the number of regressors in the model. As such, R2 alone cannot be used as a meaningful comparison of models with different numbers of independent variables. For a meaningful comparison between two models, an  F-test can be performed on the residual of squares

To demonstrate this property, first recall that the objective of least squares regression is:
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The optimal value of the objective is weakly smaller as additional columns of X are added, by the fact that relatively unconstrained minimization leads to a solution which is weakly smaller than relatively constrained minimization. Given the previous conclusion and noting that SStot depends only on y, the non-decreasing property of R2 follows directly from the definition above.

The intuitive reason that using an additional explanatory variable cannot lower the R2 is this: Minimizing SSerr is equivalent to maximizing R2. When the extra variable is included, the data always have the option of giving it an estimated coefficient of zero, leaving the predicted values and the R2 unchanged. The only way that the optimization problem will give a non-zero coefficient is if doing so improves the R2.

7.2.4. Adjusted R2
Adjusted R2 (sometimes written as [image: image98.png]


) is a modification of R2 that adjusts for the number of explanatory terms in a model. Unlike R2, the adjusted R2 increases only if the new term improves the model more than would be expected by chance. The adjusted R2 can be negative, and will always be less than or equal to R2. The adjusted R2 is defined as
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where p is the total number of regressors in the linear model (but not counting the constant term), and n is sample size.

The principle behind the Adjusted R2 statistic can be seen by rewriting the ordinary R2 as
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where VARerr = SSerr / n and VARtot = SStot / n are estimates of the variances of the errors and of the observations, respectively. These estimates are replaced by notionally "unbiased" versions: VARerr = SSerr / (n − p − 1) and VARtot = SStot / (n − 1).

Adjusted R2 does not have the same interpretation as R2. As such, care must be taken in interpreting and reporting this statistic. Adjusted R2 is particularly useful in the Feature selection stage of model building.

Adjusted R2 is not always better than R2: adjusted R2 will be more useful only if the R2 is calculated based on a sample, not the entire population. For example, if our unit analysis is a state, and we have data for all counties, then adjusted R2 will not yield any more useful information than R2. The use of an adjusted R2 is an attempt to take account of the phenomenon of statistical shrinkage.
 7.2.5. Generalized R2
Nagelkerke (1991) generalizes the definition of the coefficient of determination:

1. A generalized coefficient of determination should be consistent with the classical coefficient of determination when both can be computed;

2. Its value should also be maximised by the maximum likelihood estimation of a model;

3. It should be, at least asymptotically, independent of the sample size;

4. Its interpretation should be the proportion of the variation explained by the model;

5. It should be between 0 and 1, with 0 denoting that model does not explain any variation and 1 denoting that it perfectly explains the observed variation;

6. It should not have any unit.

The generalized R² has all of these properties.
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where L(0) is the likelihood of the model with only the intercept, [image: image102.png]L(6)



is the likelihood of the estimated model and n is the sample size.

However, in the case of a logistic model, where [image: image103.png]L(0)



cannot be greater than 1, R² is between 0 and [image: image104.png]


: thus, it is possible to define a scaled R² as R²/R²max.

7.3. Partial correlation

In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed.

7.3.1. Formal definition

Formally, the partial correlation between X and Y given a set of n controlling variables Z = {Z1, Z2, …, Zn}, written ρXY·Z, is the correlation between the residual RX and RY resulting from the linear regression of X with Z and of Y with Z, respectively. In fact, the first-order partial correlation is nothing else than a difference between a correlation and the product of the removable correlations divided by the product of the coefficients of alienation of the removable correlations. 
7.3.2. Computation

Using linear regression

A simple way to compute the partial correlation for some data is to solve the two associated linear regression problems, get the residuals, and calculate the correlation between the residuals. If we write xi, yi and zi to denote i.i.d samples of some joint probability distribution over X, Y and Z, solving the linear regression problem amounts to finding
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with N being the number of samples and [image: image107.png]


 the scalar product between the vectors v and w. The residuals are then
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and the sample partial correlation is
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Using recursive formula

It can be computationally expensive to solve the linear regression problems. Actually, the nth-order partial correlation (i.e., with |Z| = n) can be easily computed from three (n - 1)th-order partial correlations. The zeroth-order partial correlation ρXY·Ø is defined to be the regular correlation coefficient ρXY.

It holds, for any [image: image111.png]


:
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This computation as a recursive algorithm yields an exponential time complexity. However, this computation has the overlapping subproblem property, such that using dynamic programming or simply caching the results of the recursive calls yields a complexity of [image: image113.png]


.

Note in the case where Z is a single variable, this reduces to:
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Using matrix inversion

In [image: image115.png]


time, another approach allows all partial correlations to be computed between any two variables Xi and Xj of a set V of cardinality n, given all others, i.e., [image: image116.png]


, if the correlation matrix (or alternatively covariance matrix) Ω = (ωij), where ωij = ρXiXj, is invertible] . If we define P = Ω−1, we have:
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7.3.3. Interpretation



Geometrical interpretation of partial correlation

 Geometrical

Let three variables X, Y, Z [where x is the Independent Variable (IV), y is the Dependent Variable (DV), and Z is the "control" or "extra variable"] be chosen from a joint probability distribution over n variables V. Further let vi, 1 ≤ i ≤ N, be N n-dimensional i.i.d. samples taken from the joint probability distribution over V. We then consider the N-dimensional vectors x (formed by the successive values of X over the samples), y (formed by the values of Y) and z (formed by the values of Z).

It can be shown that the residuals RX coming from the linear regression of X using Z, if also considered as an N-dimensional vector rX, have a zero scalar product with the vector z generated by Z. This means that the residuals vector lives on a hyperplane Sz that is perpendicular to z.

The same also applies to the residuals RY generating a vector rY. The desired partial correlation is then the cosine of the angle φ between the projections rX and rY of x and y, respectively, onto the hyperplane perpendicular to z. 
As conditional independence test

With the assumption that all involved variables aremultivariate Gaussian, the partial correlation ρXY·Z is zero if and only if X is conditions independent from Y given Z. This property does not hold in the general case.

To test if a sample partial correlation [image: image119.png]PXY.Z



vanishes, Fisher's z-transform of the partial correlation can be used:

[image: image120.png]1 n
_ Tln(l t ;jxy.z)_
2 1-pxyz




The null hypothesis is [image: image121.png]Hy : pxy.z =0



, to be tested against the two-tail alternative [image: image122.png]


. We reject H0 with significant level α if:
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where Φ(·) is the cumulative distribution function of a Gaussian distribution with zero mean and unit standard deviation, and N is the sample SIZE. Note that this z-transform is approximate and that the actual distribution of the sample (partial) correlation coefficient is not straightforward. However, an exact t-test based on a combination of the partial regression coefficient, the partial correlation coefficient and the partial variances is available. 
Summary

The correlation is a way to measure how associated or related two variables are. The researcher looks at things that already exist and determines if and in what way those things are related to each other. The purpose of doing correlations is to allow us to make a prediction about one variable based on what we know about another variable. For example, there is a correlation between income and education. We find that people with higher income have more years of education. Partial correlation is a procedure that allows us to measure the region of three-way overlap precisely, and then to remove it from the picture in order to determine what the correlation between any two of the variables would be (hypothetically) if they were not each correlated with the third variable. Alternatively, you can say that partial correlation allows us to determine what the correlation between any two of the variables would be (hypothetically) if the third variable were held constant.
Learning Activities
Exercise

SPSS software will be used
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Topic 8.    Bivariate analysis
Introduction

This method is most useful when two different variables work together to affect the acceptability of a process or part thereof. Correlation, a measure of association often ranges between –1 and 1 is commonly used in bivariate analysis.  Where the sign of the integer represents the "direction" of correlation (negative or positive relationships) and the distance away from 0 represents the degree or extent of correlation – the farther the number away from 0, the higher or "more perfect" the relationship is between the independent and dependent variations.

Statistical significance relates to the generalizability of the relationship and, more importantly, the likelihood the observed relationship occurred by chance.  Often significance levels, when n (total number of cases in a sample) is large, can approach .001 (only 1/1000 times will the observed association occur). Measures of association and statistical significance that are used vary by the level of measurement of the variables analyzed.

Learning Outcome
Upon completing this topic, the students will be able to:

· Describe basic concepts of biveriate analysis
· Explain the steps of biveriate analysis
· Appropriately analyze biverate statistical data

Key Terms 
Biverate, Scatter plots, contingency table
8.1. Steps in bivariate analysis

· Discern how a variable is distributed among the cases in one group, and then, discerning how that variable is distributed among the cases in another group, 

· Deciding whether the two distributions differ from each other, in which ways they differ (if any), 

· Deciding what it is about the two groups that could “account for” the difference in the variable’s distribution – that is, theorizing.

When a data file contains many variables, there are often several pairs of variables to which bivariate methods may productively be applied. The most common methods include contingency tables, scatterplots, least squares lines, and correlation cofficients.

Example a bivariate data that can be used for scatter diagram
Person #
Arm Span
Height

 1
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2
157
160

3
159
162

4
160
155

5
161
160

6
161
162

7
162
170

8
165
166

9
170
170

10
170
167

11
173
185

12
173
176
 13

177

173

14
177
176

15
178
178

16
184
180

17
188
188

18
188
187

19
188
182

20
188
181

21
188
192

22
194
193

23
196
184

24
200
186

8.2. Bivariate Descriptives

Bivariate data is data that occupies two columns of a data file and comes from two variables. Bivariate descriptives are tables, visual displays, or statistics that reveal or measure some aspect of the relationship between two variables.When a data file contains many variables, there are often several pairs of variables to which bivariate methods may productively be applied. In this section we will consider contingency tables, scatterplots, least squares lines, and correlation cofficients.

Two-Way Frequency Tables and Scatterplots

We begin with an example of a data file with several variables. Consider the following scenario. The visitors to a certain city zoo during a certain afternoon purchase tickets upon arrival. As they leave the zoo later in the day, their tickets are collected and the variables, age, gender, arrival time, and departure time are recorded. Age is recorded in years and arrival and departure times are recorded to the nearest minute. Zoo visitors usually come in groups: couples, families, one adult supervising several children, etc. Solitary visitors can be considered to be groups of size 1. In the present study, this group phenomenon is recorded by means of a grouping variable called, appropriately, group. The values of the grouping variable are positive integers giving the order in which the groups arrived. Presumably the order of arrival is not as important to us as recording who was grouped with whom, and that is the main information the grouping variable allows us to preserve. Since each person in a group is given the same group number, that number shows who was in which group. 
The first few lines of the data file might look something like the following:

Name Group 
               Age 
Gender         arrival   
     depart 
Kim Sangreen 
001 

52 

M 

1:05
 
2:15

Thelma Hurd 
001 

75 

F 

1:05 

2:15
William Kasack 
002 

45 

M 

1:15 

2:35

Emily Kasack 
002 

36 

F 

1:15 

2:35

Scott Hoffman 
003 

43 

M 

1:15

2:45

Loretta Staller 
004 

36 

F 

1:12 

3:42

Susan Staller 
004 

8 

F 

1:12 

3:42

Maria VanCleve 
004 

8 

F 

1:12 

3:42

Julie VanCleve 
004 

7 

F 

1:11 

3:43

Ann Rasmussen 
004 

8 

F 

1:12 

3:43

Shawn Baily 
005 

19 

M 

1:24 

3:39

Chris Baily 
  
005 

22

M

1:24

3.39

One way to explore the relationship between these two variables is to examine a bivariate frequency table. If we group age values into several intervals, and consider the entire data file, not just the few lines reproduced above, we will obtain the following kind of table:







Age

	M
	     241 
	109
	97
	6

	F
	237 
	385 
	103 
	11


           Under 18           [18,40]           [41,60]           Over 60                     





A bivariate frequency table like this one is also called a contingency table. The present table would be called a 2 by 4 contingency table to express the fact that the body of the table consists of two rows and four columns. This gives 8 cells in the body of the table. An m by n contingency table will have mn cells. The numbers in the individual cells are frequencies. Thus we see that there were 385 females in the age range 18 to 40. A contingency table can be very powerful at revealing relationships between variables. In the present example we see at once that in the age range [18,40], females outnumber males more than three to one, and that this does not come close to happening for the other age ranges.
Summary

Bivariate descriptive statistics involves simultaneously analyzing (comparing) two variables to determine if there is a relationship between the variables.   Generally by convention, the independent variable is represented by the columns and the dependent variable is represented by the rows. As in the case of a Univaraite Distribution, we need to construct the frequency distribution for bivariate data. Such a distribution takes into account the classification in respect of both variables simultaneously. Scatter plot is used to look at pattern in bivariate data. These patterns are described in provisions of linearity, slope, and strength. Linearity defined as whether a records pattern is linear (instantly) or nonlinear (rounded). Slope refers to the way of alteration in variable Y when variable X gets large
Learning Activities
Exercise

SPSS software will be used
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TOPIC 9.      MULTIVARIATE ANALYSIS
Introduction

Multivariate analysis is a form of quantitative analysis which examines three or more variables at the same time, in order to understand the relationships among them. The simplest form of multivariate analysis is one in which the researcher, interested in the relationship between an independent variable and a dependent variable (eg: gender and political attitudes), introduces an extraneous variable (eg: age) to ensure that a correlation between the two main variables is not spurious. 
Learning outcomes

Upon completing this topic, the students will be able to:

· Describe basic concepts of multivariat analysis
· Appropriately apply data analysis concepts
· Understand the principles behind discriminant function analysis
Key Terms

MANOVA, Discriminant analysis, spartial data nalysis
9.1. General principles of Multivariate Analysis

Multivariate analysis of variance (MANOVA) is simply an extension of the univariate Analysis of variance. In analysis of variance, we examine the one metric dependent variable with the grouping independent variable. Analysis of variance fails to compare the group when the dependent variables become more than one dependent metric variable. To account for multiple dependent variables, MANOVA bundles them together into a weighted linear combination or composite variable. These linear combinations are also called canonical variates, roots, Eigenvalues, vectors or discriminant functions. 
Once the dependent variable combines into a canonical variate, MANOVA can be performed, such as univariate ANOVA. Now, MANOVA will compare whether or not the independent variable group differs from the newly created group. In this way, MANOVA essentially tests whether or not the independent grouping variable explains a significant amount of variance in the canonical variate.

 9.2. Assumptions in MANOVA:

1). Independent Random Sampling: MANOVA normally assumes that the observations are independent of one another. There is not any pattern in MANOVA for the selection of the sample. The sample is completely random.

2). Level and Measurement of the Variables: MANOVA assumes that the independent variables are categorical in nature and the dependent variables are continuous variables. MANOVA also assumes that homogeneity is present between the variables that are taken for covariates.

3). Linearity of dependent variable: In MANOVA, the dependent variables can be correlated to each other, or may be independent of each other. Study shows that in MANOVA, a moderately correlated dependent variable is preferred. In MANOVA, if the dependent variables are independent of each other, then we have to sacrifice the degrees of freedom and it will decrease the power of the analysis.

4). Multivariate Normality: MANOVA is very sensitive with outliers and missing value. Thus, it is assumed that multivariate normality is present in the data.

5). Multivariate Homogeneity of Variance: Like test analysis of variance, MANOVA also assumes that the variance between groups is equal.

Key concepts and terms

Power: Power shows the probability of correctly accepting the null hypothesis.

Post hoc test: In MANOVA, when there is a significant difference between groups, then the post hoc test is performed to know the exact group means, which significantly differ from each other.

Significance: Like ANOVA, probability value is used to make statistical decisions as to whether or not the group means are equal, or if they differ from each other.

Multivariate F-statistics: F- statistics is simply derived by dividing the means sum of the square for the source variable by the source variable mean error.

Comparison between ANOVA and MANOVA:

Computation of MANOVA is more complex compared to the ANOVA In ANOVA, we compute univariate F statistic but in MANOVA, we compute multivariate F statistics. In ANOVA, we compare grouping independent variables with one dependent variable, but in MANOVA, we compare many dependent variables with the grouping variable.
Summary
The term “multivariate statistics” is appropriately used to include all statistics where there are more than two variables simultaneously analyzed. Because MANOVA is used when there are two or more dependent variables. It can be used to test whether changes in the independent variable(s) have significant effects on the dependent variables. It also helps identify any interactions among the dependent and independent variables 
Learning Activities
Exercise

GENSTAT software will be used
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10. Discriminant Analysis

Introduction

Multiple discriminant analysis (MDA) is an extension of discriminant analysis and is related to multiple analysis of variance (MANOVA), sharing many of the same assumptions and tests. MDA is used to classify a categorical dependent which has more than two categories, using as predictors a number of interval or dummy independent variables. MDA is sometimes also called discriminant factor analysis or canonical discriminant analysis. There are several purposes for DA and/or MDA

Learning Outcome

Upon completing this topic, the students will be able to:

· Explain the purposes of discrminant analysis
· Discuss the principles underlying discriminant analysis
· Apply discriminant concepts in making statistical decisions
 Key Terms

Discriminating variables, discriminant factor analysis, discriminant coefficients, Wilks' lambda

10.1. Purposes for Distriminant Analysis 

· To classify cases into groups using a discriminant prediction equation. 

· To test theory by observing whether cases are classified as predicted. 

· To investigate differences between or among groups. 

· To determine the most parsimonious way to distinguish among groups. 

· To determine the percent of variance in the dependent variable explained by the independents. 
· To determine the percent of variance in the dependent variable explained by the independents over and above the variance accounted for by control variables, using sequential discriminant analysis. 
· To assess the relative importance of the independent variables in classifying the dependent variable. 
· To discard variables which are little related to group distinctions. 
· To infer the meaning of MDA dimensions which distinguish groups, based on discriminant loadings. 

Discriminant analysis has two steps: (1) an F test (Wilks' lambda) is used to test if the discriminant model as a whole is significant, and (2) if the F test shows significance, then the individual independent variables are assessed to see which differ significantly in mean by group and these are used to classify the dependent variable. 

Assumptions

Discriminant analysis shares all the usual assumptions of correlation, requiring linear and homoscedastic relationships, and untruncated interval or near interval data. Like multiple regression, it also assumes proper model specification (inclusion of all important independents and exclusion of extraneous variables). DA also assumes the dependent variable is a true dichotomy since data which are forced into dichotomous coding are truncated, attenuating correlation. 

DA is an earlier alternative to logistic regression, which is now frequently used in place of DA as it usually involves fewer violations of assumptions (independent variables needn't be normally distributed, linearly related, or have equal within-group variances), is robust, handles categorical as well as continuous variables, and has coefficients which many find easier to interpret. Logistic regression is preferred when data are not normal in distribution or group sizes are very unequal. However, discriminant analysis is preferred when the assumptions of linear regression are met since then DA has more statistical power than logistic regression (less chance of type 2 errors - accepting a false null hypothesis). Multiple discriminant function analysis (MDA) extends analysis to dependents with more than two categories. 

Key Concepts

Discriminating variables: These are the independent variables, also called predictors. 

The eigenvalue, also called the characteristic root of each discriminant function, reflects the ratio of importance of the dimensions which classify cases of the dependent variable.

The criterion variable. This is the dependent variable, also called the grouping variable in SPSS. It is the object of classification efforts. 

Pairwise group comparisons display the distances between group means (of the dependent variable) in the multidimensional space formed by the discriminant functions. The pairwise group comparisons table gives an F test of significance (based on Mahalanobis distances) of the distance of the group means, enabling the researcher to determine if every group mean is significantly distant from every other group mean. Also, the magnitude of the F values can be used to compare distances between groups in multivariate space.  
10.2. Discriminant functions. 
A discriminant function, also called a canonical root, is a latent variable which is created as a linear combination of discriminating (independent) variables, such that L = b1x1 + b2x2 + ... + bnxn + c, where the b's are discriminant coefficients, the x's are discriminating variables, and c is a constant. This is analogous to multiple regression, but the b's are discriminant coefficients which maximize the distance between the means of the criterion (dependent) variable. Note that the foregoing assumes the discriminant function is estimated using ordinary least-squares, the traditional method, but there is also a version involving maximum likelihood estimation. 

There is one discriminant function for 2-group discriminant analysis, but for higher order DA, the number of functions (each with its own cut-off value) is the lesser of (g - 1), where g is the number of categories in the grouping variable, or p,the number of discriminating (independent) variables. Each discriminant function is orthogonal to the others. A dimension is simply one of the discriminant functions when there are more than one, in multiple discriminant analysis. 

The first function maximizes the differences between the values of the dependent variable. The second function is orthogonal to it (uncorrelated with it) and maximizes the differences between values of the dependent variable, controlling for the first factor. 
The eigenvalue, also called the characteristic root of each discriminant function, reflects the ratio of importance of the dimensions which classify cases of the dependent variable. There is one eigenvalue for each discriminant function. For two-group DA, there is one discriminant function and one eigenvalue, which accounts for 100% of the explained variance. If there is more than one discriminant function, the first will be the largest and most important, the second next most important in explanatory power, and so on. The eigenvalues assess relative importance because they reflect the percents of variance explained in the dependent variable, cumulating to 100% for all functions. That is, the ratio of the eigenvalues indicates the relative discriminating power of the discriminant functions. If the ratio of two eigenvalues is 1.4, for instance, then the first discriminant function accounts for 40% more between-group variance in the dependent categories than does the second discriminant function. 

Summary
Linear discriminant analysis (LDA) and the related Fisher's linear discriminant are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterize or separate two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.

Discriminant Analysis is closely related to ANOVA (analysis of variance) and regression analysis, which also attempt to express one dependent variable as a linear combination of other features or measurements. In the other two methods however, the dependent variable is a numerical quantity, while for Discriminant Analysis it is a categorical variable (i.e. the class label). Discriminant Analysis is also closely related to principal component analysis (PCA) and factor analysis in that both look for linear combinations of variables which best explain the data. LDA explicitly attempts to model the difference between the classes of data. PCA on the other hand does not take into account any difference in class, and factor analysis builds the feature combinations based on differences rather than similarities. Discriminant analysis is also different from factor analysis in that it is not an interdependence technique

Learning Activities
Exercise

SPSS software will be used
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Topic 11. Principal Component Analysis (PCA) 
Introduction

Principal components analysis and Factor analysis are used to identify underlying constructs or factors that explain the correlations among a set of items. They are often used to summarize a large number of items with a smaller number of derived items, called factors. Factor analysis is a technique that is used to reduce a large number of variables into fewer numbers of factors. Factor analysis extracts maximum common variance from all variables and puts them into a common score. As an index of all variables, we can use this score for further analysis. Factor analysis is part of general linear model (GLM) and this method also assumes several assumptions: there is linear relationship, there is no multicollinearity, it includes relevant variables into analysis, and there is true correlation between variables and factors. Several types of factor analysis methods are available, but principle component analysis is used most commonly.
Learning Outcome
Upon completing this topic, the students will be able to:

· Explain Key terms used both in principle component analysis 
· Appropriately apply principle component analysis in interpreting statistical problems

· Explain correlations of factors through principle component analysis 
Key Terms
Communality –It demonstrates h2, which is the proportion of the variance of an item that is accounted for by the common factors in a factor analysis. The unique variance of an item is given by 1− h2 = Item Specific variance + Item error variance (random error). 

Eigenvalue - The standardized variance associated with a particular factor. The sum of the eigenvalues cannot exceed the number of items in the analysis, since each item contributes 1 to the sum of variances. 

Factor: A linear combination of items (in a regression sense, where the total test score is the dependent variable, and the items are the independent variables). 

Factor loading: For a given item in a given factor this is the correlation between the vector of subjects’ responses to that item, with the vector of (subjects’) predicted scores, according to a regression equation treating the entire set of items as independent variables. The factor loading expresses the correlation of the item with the factor. The square of this factor loading indicates the proportion of variance shared by the item with the factor. 

Factor Pattern Matrix - A matrix containing the coefficients or "loadings" used to express the item in terms of the factors. This is the same as the “structure matrix” if the factors are orthogonal (uncorrelated). 

Factor Structure Matrix - A matrix containing the correlations of the item with each of the factors. This is the same as the pattern matrix if the factors are orthogonal, i.e., uncorrelated (principal components analysis). 

Rotated factor solution – A factor solution, where the axis of the factor plot is rotated for the purposes of uncovering a more meaningful pattern of item factor loadings. 

Scree plot-A plot of the obtained eigenvalue for each factor. 

11.1. Concepts of Principal Component Analysis (PCA)
PCA is a type of factor analysis that is most often used as an exploratory tool.  It is used to simplify the description of a set of many related variables; PCA reduces the number of variables by finding new components that are combinations of the old variables.  This is done by capturing the highest amount of variation that is present in the data set to display graphically. 

PCA can also be useful as a preliminary step in a complicated regression analysis as well as other statistical tests.  In the case of regression, first run a PCA which decreases the number of “important” variables, and then a regression can be performed with the principal component scores as independent variables.  PCA is used to determine the relationships among a group of variables in situations where it is not appropriate to make a priori grouping decisions, i.e. the data is not split into groups of dependent and independent variables.  Principal Components are created by forming composite axes that maximize the overall variation account for by the axis.  In other words, PCA determines the net effect of each variable on the total variance of the data set, and then extracts the maximum variance possible from the data.

Practical issues of PCA
Many of the issues that are relevant to canonical correlation also apply to PCA.  Normality in the distribution of variables is not strictly required when PCA is used descriptively, but it does enhance the analysis.  Linearity between pairs of variables is assumed and inspection of scatterplots is an easy way to determine if this assumption is met.  Again, transformation can be useful if inspection of scatterplots reveals a lack of linearity.  Outliers and missing data will affect the outcome of analysis and these issues need to be addressed through estimation or deletion.   

The calculations of PCA require a working knowledge of matrix algebra. An introduction to matrix algebra can be found in the references found below. To perform a PCA the data are arranged in a correlation matrix (R) and then diagonalized.  A diagonalized matrix of eigenvalues (L) has numbers in the positive diagonal, 0’s everywhere else. The correlation matrix (R) is diagonalized with the equation:

L = V’RV
The diagonalized matrix (L), also known as the eigenvalue matrix, is created by pre-multiplying the matrix R by the transpose (a matrix formed by interchanging the rows and columns of a given matrix) of the eigenvector matrix (V’). This vector is then post-multiplyied by the eigenvector matrix (V).  Pre-multiplying the matrix of eigenvectors by its transpose (V’V) produces a matrix with ones in the positive diagonal and zeros everywhere else (see below), so the equation above just redistributes the variance of the matrix R.  
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Calculations of eigenvectors and eigenvalues are the same as for canonical correlation.  Eigenvalues are measures of the variance in the matrix.  In an example where there are 10 components, on average each component will have an eigenvalue of 1 and will explain 10% of the variation in the data.  A component with an eigenvalue of 2 explains twice the variance of an “average” variable, or 20% in the example. More often than not the first eigenvalue will capture a majority of the variance in the data and the variance captured by successive eigenvalues will be minimal.
Rearrange the last equation to give:  R=VLV’

The square root of the eigenvalue matrix (L) is taken:  R = (VL1/2)(L1/2V’) 
Let VL1/2=A and L1/2V’=A’ to give R=AA’
The correlation matrix (R) is the product of the loading matrix (A) and its transpose (A’), each a combination of eigenvectors and square roots of eigenvalues.  The loading matrix represents the correlation between each component and each variable.

Score coefficients, which are similar to regression coefficients calculated in a multiple regression, are equal to the product of the inverse of the correlation matrix and the loading matrix:  B = R-1A
After extraction of the principal components variables, components that explain a small amount of variance in the data set may be discarded.  There are no set rules as to how many principal components should be retained.  One rule of thumb is to only accept components, which explain over 80% of the variance, or all of the components with eigenvalues greater than 1.  Another more generous possibility is to accept all components, which explain a “non-random” percentage of the variance.  A scree test can be useful in determining the total amount of variance explained by each component.  A scree test is simply a graph with the principal components on the x-axis and eigenvalues on the y-axis.  A decision about which principal components to included is made by drawing a line from the first component, and looking for an inflection point between the steep curve and the straight line at the bottom.  Principal components to the left of the inflection point would be retained. In the example below, two components would be retained.
[image: image125.png][a] o~ —
92ZTS onTeAusbTd

Eigenvalue Number




The only remaining question now is “What do the various principal components mean?”  Interpretation of principal components sometimes can be a bit ambiguous with a complex data set. However, components are usually interpreted by examining the correlations between the initial raw variables and each component. It may be possible to interpret each principal component as a combination of a small number of the original variables, with which they are most highly correlated.  The principal components can also remain unnamed and simply be referred to by their component names (PC1, PC2, etc.).  
PCA is the simplest multivariate method (ordination) and is a descriptive technique. Therefore, there are several situations that are not appropriate for PCA.  PCA cannot be used when results are pooled across several samples, and not for a repeated measures design.  This is because the underlying structure of the data set may shift across samples or across time, and the principal components analysis does not allow for this.  Additionally, PCA is very sensitive to the sizes of correlations between variables, and any non-linearity between pairs of variables.  

There are several potential problems with performing a PCA.  Most importantly, there are no criteria against which to test results.  PCA does not test a null hypothesis and there is no p value to let you know if your results are significant. There is no “initial” or “perfect” principal component that you are testing your data against. Therefore, there is no way of testing the significance of the components. The interpretations of the results are subjective and can be misleading. Often, inconclusive results are produced and there is no guarantee that the results will yield any biologically significant information. 
Summary
Principal components refers to the principal components model, in which  

items are assumed to be exact linear combinations of factors. The Principal 
components method assumes that components (“factors”) are uncorrelated. 
It also assumes that the communality of each  item sums to 1 over all 
components (factors), implying that each item has 0 unique variance.
Learning Activities
Exercise

SPSS software will be used
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TOPIC 12.  FACTOR ANALYSIS
Introduction

Factor analysis is a statistical method used to describe variability among observed variables in terms of a potentially lower number of unobserved variables called factors. In other words, it is possible, for example, that variations in three or four observed variables mainly reflect the variations in a single unobserved variable, or in a reduced number of unobserved variables. Factor analysis searches for such joint variations in response to unobserved latent variables. The observed variables are modeled as linear combinations of the potential factors, plus "error" terms. The information gained about the interdependencies between observed variables can be used later to reduce the set of variables in a dataset. Factor analysis originated in psychometrics, and is used in behavioral sciences, social sciences, marketing, product management, operations research, and other applied sciences that deal with large quantities of data.

Learning Outcome

Upon completing this topic, the students will be able to:

· Explain Key terms used both in principle  factor analysis
· Appropriately apply principle factor analysis in interpreting statistical problems
· Explain correlations of factors through factor analysis
Key Terms
Factor analysis, exploratory factor analysis, confirmatory factor analysis, common factor analysis
12.1. Definition and concepts of Factor Analysis

Factor analysis is related to principal component analysis (PCA), but the two are not identical. Because PCA performs a variance-maximizing rotation of the variable space, it takes into account all variability in the variables. In contrast, factor analysis estimates how much of the variability is due to common factors ("communality"). The two methods become essentially equivalent if the error terms in the factor analysis model (the variability not explained by common factors, see below) can be assumed to all have the same variance.
Suppose we have a set of p observable random variables, [image: image126.png]
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.

Suppose for some unknown constants lij and k unobserved random variables Fj, where [image: image128.png]
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, where k < p, we have
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Here, the εi are independently distributed error terms with zero mean and finite variance, which may not be the same for all i. Let Var(εi) = ψi, so that we have
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In matrix terms, we have
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If we have n observations, then we will have the dimensions [image: image133.png]£
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. Each column of x and F denote values for one particular observation, and matrix L does not vary across observations.

Also we will impose the following assumptions on F.

1. F and ε are independent.

2. E(F) = 0

3. Cov(F) = I
Any solution of the above set of equations following the constraints for F is defined as the factors, and L as the loading matrix.

Suppose Cov(x) = Σ. Then note that from the conditions just imposed on F, we have
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or
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Note that for any orthogonal matrix Q if we set L = LQ and F = QTF, the criteria for being factors and factor loadings still hold. Hence a set of factors and factor loadings is identical only up to orthogonal transformations.

Example

The following example is a fictionalized simplification for expository purposes, and should not be taken as being realistic. Suppose a psychologist proposes a theory that there are two kinds of intelligence, "verbal intelligence" and "mathematical intelligence", neither of which is directly observed. Evidence for the theory is sought in the examination scores from each of 10 different academic fields of 1000 students. If each student is chosen randomly from a large population, then each student's 10 scores are random variables. The psychologist's theory may say that for each of the 10 academic fields, the score averaged over the group of all students who share some common pair of values for verbal and mathematical "intelligences" is some constant times their level of verbal intelligence plus another constant times their level of mathematical intelligence, i.e., it is a linear combination of those two "factors". The numbers for a particular subject, by which the two kinds of intelligence are multiplied to obtain the expected score, are posited by the theory to be the same for all intelligence level pairs, and are called "factor loadings" for this subject. For example, the theory may hold that the average student's aptitude in the field of Horticulture is

{10 × the student's verbal intelligence} + {6 × the student's mathematical intelligence}.

The numbers 10 and 6 are the factor loadings associated with Horticulture. Other academic subjects may have different factor loadings.

Two students having identical degrees of verbal intelligence and identical degrees of mathematical intelligence may have different aptitudes in Horticulture because individual aptitudes differ from average aptitudes. That difference is called the "error" — a statistical term that means the amount by which an individual differs from what is average for his or her levels of intelligence 

The observable data that go into factor analysis would be 10 scores of each of the 1000 students, a total of 10,000 numbers. The factor loadings and levels of the two kinds of intelligence of each student must be inferred from the data.

Mathematical model of the same example

In the example above, for i = 1, ..., 1,000 the ith student's scores are
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where

· xk,i is the ith student's score for the kth subject

· μk is the mean of the students' scores for the kth subject (assumed to be zero, for simplicity, in the example as described above, which would amount to a simple shift of the scale used)

· vi is the ith student's "verbal intelligence",

· mi is the ith student's "mathematical intelligence",

· [image: image140.png]


are the factor loadings for the kth subject, for j = 1, 2.

· εk,i is the difference between the ith student's score in the kth subject and the average score in the kth subject of all students whose levels of verbal and mathematical intelligence are the same as those of the ith student,

In matrix notation, we have
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where

· N is 1000 students

· X is a 10 × 1,000 matrix of observable random variables,

· μ is a 10 × 1 column vector of unobservable constants (in this case "constants" are quantities not differing from one individual student to the next; and "random variables" are those assigned to individual students; the randomness arises from the random way in which the students are chosen),

· L is a 10 × 2 matrix of factor loadings (unobservable constants, ten academic topics, each with two intelligence parameters that determine success in that topic),

· F is a 2 × 1,000 matrix of unobservable random variables (two intelligence parameters for each of 1000 students),

· ε is a 10 × 1,000 matrix of unobservable random variables.

Observe that by doubling the scale on which "verbal intelligence"—the first component in each column of F—is measured, and simultaneously halving the factor loadings for verbal intelligence makes no difference to the model. Thus, no generality is lost by assuming that the standard deviation of verbal intelligence is 1. Likewise for mathematical intelligence. Moreover, for similar reasons, no generality is lost by assuming the two factors are uncorrelated with each other. The "errors" ε are taken to be independent of each other. The variances of the "errors" associated with the 10 different subjects are not assumed to be equal.

Note that, since any rotation of a solution is also a solution, this makes interpreting the factors difficult. In this particular example, if we do not know beforehand that the two types of intelligence are uncorrelated, then we cannot interpret the two factors as the two different types of intelligence. Even if they are uncorrelated, we cannot tell which factor corresponds to verbal intelligence and which corresponds to mathematical intelligence without an outside argument.

The values of the loadings L, the averages μ, and the variances of the "errors" ε must be estimated given the observed data X and F (the assumption about the levels of the factors is fixed for a given F).

12.2. Types of factor analysis

Exploratory factor analysis (EFA) is used to uncover the underlying structure of a relatively large set of variables. The researcher's a priori assumption is that any indicator may be associated with any factor. This is the most common form of factor analysis. There is no prior theory and one uses factor loadings to intuit the factor structure of the data.

Confirmatory factor analysis (CFA) seeks to determine if the number of factors and the loadings of measured (indicator) variables on them confirm to what is expected on the basis of pre-established theory. Indicator variables are selected on the basis of prior theory and factor analysis is used to see if they load as predicted on the expected number of factors. The researcher's à priori assumption is that each factor (the number and labels of which may be specified à priori) is associated with a specified subset of indicator variables. A minimum requirement of confirmatory factor analysis is that one hypothesizes beforehand the number of factors in the model, but usually also the researcher will posit expectations about which variables will load on which factors. The researcher seeks to determine, for instance, if measures created to represent a latent variable really belong together.
Principal component analysis (PCA): The most common form of factor analysis, PCA seeks a linear combination of variables such that the maximum variance is extracted from the variables. It then removes this variance and seeks a second linear combination which explains the maximum proportion of the remaining variance, and so on. This is called the principal axis method and results in orthogonal (uncorrelated) factors.

Canonical factor analysis , also called Rao's canonical factoring, is a different method of computing the same model as PCA, which uses the principal axis method. CFA seeks factors which have the highest canonical correlation with the observed variables. CFA is unaffected by arbitrary rescaling of the data.

Common factor analysis, also called principal factor analysis (PFA) or principal axis factoring (PAF), seeks the least number of factors which can account for the common variance (correlation) of a set of variables.

Image factoring: based on the correlation matrix of predicted variables rather than actual variables, where each variable is predicted from the others using multiple regression.

Alpha factoring: based on maximizing the reliability of factors, assuming variables are randomly sampled from a universe of variables. All other methods assume cases to be sampled and variables fixed.

 Terminology

Factor loadings: The factor loadings, also called component loadings in PCA, are the correlation coefficients between the variables (rows) and factors (columns). Analogous to Pearson's r, the squared factor loading is the percent of variance in that indicator variable explained by the factor. To get the percent of variance in all the variables accounted for by each factor, add the sum of the squared factor loadings for that factor (column) and divide by the number of variables. (Note the number of variables equals the sum of their variances as the variance of a standardized variable is 1.) This is the same as dividing the factor's eigenvalue by the number of variables.

Interpreting factor loadings: By one rule of thumb in confirmatory factor analysis, loadings should be .7 or higher to confirm that independent variables identified a priori are represented by a particular factor, on the rationale that the .7 level corresponds to about half of the variance in the indicator being explained by the factor. However, the .7 standard is a high one and real-life data may well not meet this criterion, which is why some researchers, particularly for exploratory purposes, will use a lower level such as .4 for the central factor and .25 for other factors call loadings above .6 "high" and those below .4 "low". In any event, factor loadings must be interpreted in the light of theory, not by arbitrary cutoff levels.

In oblique rotation, one gets both a pattern matrix and a structure matrix. The structure matrix is simply the factor loading matrix as in orthogonal rotation, representing the variance in a measured variable explained by a factor on both a unique and common contributions basis. The pattern matrix, in contrast, contains coefficients which just represent unique contributions. The more factors, the lower the pattern coefficients as a rule since there will be more common contributions to variance explained. For oblique rotation, the researcher looks at both the structure and pattern coefficients when attributing a label to a factor.

Communality (h2): The sum of the squared factor loadings for all factors for a given variable (row) is the variance in that variable accounted for by all the factors, and this is called the communality. The communality measures the percent of variance in a given variable explained by all the factors jointly and may be interpreted as the reliability of the indicator. Spurious solutions: If the communality exceeds 1.0, there is a spurious solution, which may reflect too small a sample or the researcher has too many or too few factors.

Uniqueness of a variable: 1-h2. That is, uniqueness is the variability of a variable minus its communality.

Eigenvalues:/Characteristic roots: The eigenvalue for a given factor measures the variance in all the variables which is accounted for by that factor. The ratio of eigenvalues is the ratio of explanatory importance of the factors with respect to the variables. If a factor has a low eigenvalue, then it is contributing little to the explanation of variances in the variables and may be ignored as redundant with more important factors. Eigenvalues measure the amount of variation in the total sample accounted for by each factor.

Extraction sums of squared loadings: Initial eigenvalues and eigenvalues after extraction (listed by SPSS as "Extraction Sums of Squared Loadings") are the same for PCA extraction, but for other extraction methods, eigenvalues after extraction will be lower than their initial counterparts. SPSS also prints "Rotation Sums of Squared Loadings" and even for PCA, these eigenvalues will differ from initial and extraction eigenvalues, though their total will be the same.

Factor scores: Also called component scores in PCA, factor scores are the scores of each case (row) on each factor (column). To compute the factor score for a given case for a given factor, one takes the case's standardized score on each variable, multiplies by the corresponding factor loading of the variable for the given factor, and sums these products. Computing factor scores allows one to look for factor outliers. Also, factor scores may be used as variables in subsequent modeling.

12.3. Criteria for determining the number of factors

Comprehensibility: Though not a strictly mathematical criterion, there is much to be said for limiting the number of factors to those whose dimension of meaning is readily comprehensible. Often this is the first two or three. Using one or more of the methods below, the researcher determines an appropriate range of solutions to investigate. For instance, the Kaiser criterion may suggest three factors and the scree test may suggest 5, so the researcher may request 3-, 4-, and 5-factor solutions and select the solution which generates the most comprehensible factor structure.

Kaiser criterion: The Kaiser rule is to drop all components with eigenvalues under 1.0. The Kaiser criterion is the default in SPSS and most computer programs but is not recommended when used as the sole cut-off criterion for estimating the number of factors.

Scree plot: The Cattell scree test plots the components as the X axis and the corresponding eigenvalues as the Y-axis. As one moves to the right, toward later components, the eigenvalues drop. When the drop ceases and the curve makes an elbow toward less steep decline, Cattell's scree test says to drop all further components after the one starting the elbow. This rule is sometimes criticised for being amenable to researcher-controlled "fudging". That is, as picking the "elbow" can be subjective because the curve has multiple elbows or is a smooth curve, the researcher may be tempted to set the cut-off at the number of factors desired by his or her research agenda.

Variance explained criteria: Some researchers simply use the rule of keeping enough factors to account for 90%; (sometimes 80%) of the variation. Where the researcher's goal emphasizes parsimony (explaining variance with as few factors as possible), the criterion could be as low as 50%

 Rotation methods

Rotation serves to make the output more understandable and is usually necessary to facilitate the interpretation of factors. Varimax rotation is an orthogonal rotation of the factor axes to maximize the variance of the squared loadings of a factor (column) on all the variables (rows) in a factor matrix, which has the effect of differentiating the original variables by extracted factor. Each factor will tend to have either large or small loadings of any particular variable. A varimax solution yields results which make it as easy as possible to identify each variable with a single factor. This is the most common rotation option.

Quartimax rotation is an orthogonal alternative which minimizes the number of factors needed to explain each variable. This type of rotation often generates a general factor on which most variables are loaded to a high or medium degree. Such a factor structure is usually not helpful to the research purpose. Equimax rotation is a compromise between Varimax and Quartimax criteria.

Direct oblimin rotation is the standard method when one wishes a non-orthogonal (oblique) solution – that is, one in which the factors are allowed to be correlated. This will result in higher eigenvalues but diminished interpretability of the factors. See below.

Promax rotation is an alternative non-orthogonal (oblique) rotation method which is computationally faster than the direct oblimin method and therefore is sometimes used for very large datasets.

Advantages

· Reduction of number of variables, by combining two or more variables into a single factor. For example, performance at running, ball throwing, batting, jumping and weight lifting could be combined into a single factor such as general athletic ability. Usually, in an item by people matrix, factors are selected by grouping related items. In the Q factor analysis technique, the matrix is transposed and factors are created by grouping related people: For example, liberals, libertarians, conservatives and socialists, could form separate groups.

· Identification of groups of inter-related variables, to see how they are related to each other. For example, Carroll used factor analysis to build his Three Stratum Theory. He found that a factor called "broad visual perception" relates to how good an individual is at visual tasks. He also found a "broad auditory perception" factor, relating to auditory task capability. Furthermore, he found a global factor, called "g" or general intelligence, that relates to both "broad visual perception" and "broad auditory perception". This means someone with a high "g" is likely to have both a high "visual perception" capability and a high "auditory perception" capability, and that "g" therefore explains a good part of why someone is good or bad in both of those domains.

Disadvantages

· Each orientation is equally acceptable mathematically. But different factorial theories proved to differ as much in terms of the orientations of factorial axes for a given solution as in terms of anything else, so that model fitting did not prove to be useful in distinguishing among theories." (Sternberg, 1977). This means all rotations represent different underlying processes, but all rotations are equally valid outcomes of standard factor analysis optimization. Therefore, it is impossible to pick the proper rotation using factor analysis alone.

· Factor analysis can be only as good as the data allows. In psychology, where researchers often have to rely on less valid and reliable measures such as self-reports, this can be problematic.

· Interpreting factor analysis is based on using a “heuristic”, which is a solution that is "convenient even if not absolutely true" (Richard B. Darlington). More than one interpretation can be made of the same data factored the same way, and factor analysis cannot identify causality.

Factor analysis in marketing

The basic steps are:

· Identify the salient attributes consumers use to evaluate products in this category.

· Use quantitative marketing research techniques (such as surveys) to collect data from a sample of potential customers concerning their ratings of all the product attributes.

· Input the data into a statistical program and run the factor analysis procedure. The computer will yield a set of underlying attributes (or factors).

· Use these factors to construct perceptual maps and other product positioning devices.

Information collection

The data collection stage is usually done by marketing research professionals. Survey questions ask the respondent to rate a product sample or descriptions of product concepts on a range of attributes. Anywhere from five to twenty attributes are chosen. They could include things like: ease of use, weight, accuracy, durability, colourfulness, price, or size. The attributes chosen will vary depending on the product being studied. The same question is asked about all the products in the study. The data for multiple products is coded and input into a statistical program such as R, PSPP, SAS, Stata, Statistica, JMP and SYSTAT.

Analysis

The analysis will isolate the underlying factors that explain the data. Factor analysis is an interdependence technique. The complete set of interdependent relationships is examined. There is no specification of dependent variables, independent variables, or causality. Factor analysis assumes that all the rating data on different attributes can be reduced down to a few important dimensions. This reduction is possible because the attributes are related. The rating given to any one attribute is partially the result of the influence of other attributes. The statistical algorithm deconstructs the rating (called a raw score) into its various components, and reconstructs the partial scores into underlying factor scores. The degree of correlation between the initial raw score and the final factor score is called a factor loading. There are two approaches to factor analysis: principal component analysis(the total variance in the data is considered); and "common factor analysis".
Advantages

· Both objective and subjective attributes can be used provided the subjective attributes can be converted into scores

· Factor Analysis can be used to identify hidden dimensions or constructs which may not be apparent from direct analysis

· It is easy and inexpensive to do

Disadvantages

· Usefulness depends on the researchers' ability to collect a sufficient set of product attributes. If important attributes are missed the value of the procedure is reduced.

· If sets of observed variables are highly similar to each other and distinct from other items, factor analysis will assign a single factor to them. This may make it harder to identify factors that capture more interesting relationships.

· Naming the factors may require background knowledge or theory because multiple attributes can be highly correlated for no apparent reason.
Summary

Factor analysis is a technique that is used to reduce a large number of 
variables into  fewer numbers of factors Exploratory factor analysis This is 
the most common factor analysis used by researchers and it is not based on 
any prior theory. Note that principal component analysis and common factor analysis differ in terms of their conceptual underpinnings. The factors produced by principal component analysis are conceptualized as being linear combinations of the variables whereas the factors produced by common factor analysis are conceptualized as being latent variables. Computationally, the only difference is that the diagonal of the relationships matrix is replaced with communalities (the variance accounted for by more than one variable) in common factor analysis. This has the result of making the factor scores indeterminate and differ depending on the method of computation. Meanwhile, factor scores produced by principal component analysis are not dependent on the method of computation.
Learning Activities
Exercise

SPSS software will be used
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Links to sites with more information on PCA

http://obelia.jde.aca.mmu.ac.uk/multivar/pca.htm


http://www.statsoftinc.com/textbook/stcanan.html 


http://www2.chass.ncsu.edu/garson/pa765/canonic.htm



http://www.ivorix.com/en/products/tech/pca/pca.html


http://www.statsoftinc.com/textbook/stfacan.html
TOPIC 13.  Cluster analysis

Introduction

Cluster analysis or clustering is the assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense. Clustering is a method of unsupervised learning, and a common technique for statistical data analysis used in many fields, including machine learning, data mining, pattern recognition, image analysis, information retrieval, and bioinformatics. Besides the term clustering, there are a number of terms with similar meanings, including automatic classification, numerical taxonomy, botryology and typological analysis.
Learning Outcome
Upon completing this topic, the students will be able to:

· Explain Key concepts of cluster as statistical tool
· Understand how different types of clusters can be used for statistical decisions making
· Discuss the application of cluster analysis in statistics
Key terms
Clustering, K-means algorithm, fuzzy-c means, Locality sensitive hashing
13.1. Types of clustering

Hierarchical algorithms find successive clusters using previously established clusters. These algorithms usually are either agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.

Partitional algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.

Density-based clustering algorithms are devised to discover arbitrary-shaped clusters. In this approach, a cluster is regarded as a region in which the density of data objects exceeds a threshold. DBSCAN and OPTICS are two typical algorithms of this kind.

Subspace clustering methods look for clusters that can only be seen in a particular projection (subspace, manifold) of the data. These methods thus can ignore irrelevant attributes. The general problem is also known as Correlation clustering while the special case of axis-parallel subspaces is also known as Two-way clustering, co-clustering or biclustering: in these methods not only the objects are clustered but also the features of the objects, i.e., if the data is represented in a data matrix, the rows and columns are clustered simultaneously. They usually do not however work with arbitrary feature combinations as in general subspace methods. But this special case deserves attention due to its applications in bioinformatics.

Many clustering algorithms require the specification of the number of clusters to produce in the input data set, prior to execution of the algorithm. 

Distance measure
An important step in most clustering is to select a distance measure, which will determine how the similarity of two elements is calculated. This will influence the shape of the clusters, as some elements may be close to one another according to one distance and farther away according to another. For example, in a 2-dimensional space, the distance between the point (x = 1, y = 0) and the origin (x = 0, y = 0) is always 1 according to the usual norms, but the distance between the point (x = 1, y = 1) and the origin can be 2, [image: image142.png]


or 1 if you take respectively the 1-norm, 2-norm or infinity-norm distance.

Common distance functions:

· The Euclidean distance (also called 2-norm distance).

· The Manhattan distance (1-norm)

· The maximum norm (infinity norm)

· The Mahalanobis distance corrects data for different scales and correlations in the variables

· The angle between two vectors can be used as a distance measure when clustering high dimensional data.

· The Hamming distance measures the minimum number of substitutions required to change one member into another.

Another important distinction is whether the clustering uses symmetric or asymmetric distances. Many of the distance functions listed above have the property that distances are symmetric (the distance from object A to B is the same as the distance from B to A.

Hierarchical clustering

Hierarchical clustering creates a hierarchy of clusters which may be represented in a tree structure called a dendrogram. The root of the tree consists of a single cluster containing all observations, and the leaves correspond to individual observations. Algorithms for hierarchical clustering are generally either agglomerative, in which one starts at the leaves and successively merges clusters together; or divisive, in which one starts at the root and recursively splits the clusters. Any valid metric may be used as a measure of similarity between pairs of observations. The choice of which clusters to merge or split is determined by a linkage criterion, which is a function of the pairwise distances between observations.

Cutting the tree at a given height will give a clustering at a selected precision. In the following example, cutting after the second row will yield clusters {a} {b c} {d e} {f}. Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger clusters.

Agglomerative hierarchical clustering

For example, suppose this data is to be clustered, and the euclidean distance is the distance metric.



Raw data

The hierarchical clustering dendrogram would be as such:



Traditional representation

This method builds the hierarchy from the individual elements by progressively merging clusters. In our example, we have six elements {a} {b} {c} {d} {e} and {f}. The first step is to determine which elements to merge in a cluster. Usually, we want to take the two closest elements, according to the chosen distance.

Optionally, one can also construct a distance matrix at this stage, where the number in the i-th row j-th column is the distance between the i-th and j-th elements. Then, as clustering progresses, rows and columns are merged as the clusters are merged and the distances updated. This is a common way to implement this type of clustering, and has the benefit of caching distances between clusters. A simple agglomerative clustering algorithm is described in the single-linkage clustering page; it can easily be adapted to different types of linkage (see below).

Suppose we have merged the two closest elements b and c, we now have the following clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. To do that, we need to take the distance between {a} and {b c}, and therefore define the distance between two clusters. Usually the distance between two clusters [image: image145.png]
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is one of the following:

· The maximum distance between elements of each cluster (also called complete linkage clustering):

[image: image147.png]



· The minimum distance between elements of each cluster (also called single-linkage clustering):

[image: image148.png]min{ d(z,y) :x € A, y€ B}.




· The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in UPGMA):
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· The sum of all intra-cluster variance.

· The increase in variance for the cluster being merged (Ward's criterion).

· The probability that candidate clusters spawn from the same distribution function (V-linkage).

Each agglomeration occurs at a greater distance between clusters than the previous agglomeration, and one can decide to stop clustering either when the clusters are too far apart to be merged (distance criterion) or when there is a sufficiently small number of clusters (number criterion).

Concept clustering

Another variation of the agglomerative clustering approach is conceptual clustering.

Partitional clustering

 K-means and derivatives

The k-means algorithm assigns each point to the cluster whose center (also called centroid) is nearest. The center is the average of all the points in the cluster — that is, its coordinates are the arithmetic mean for each dimension separately over all the points in the cluster.

Example: The data set has three dimensions and the cluster has two points: X = (x1,x2,x3) and Y = (y1,y2,y3). Then the centroid Z becomes Z = (z1,z2,z3), where [image: image150.png]y =N
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The algorithm steps are:

· Choose the number of clusters, k.

· Randomly generate k clusters and determine the cluster centers, or directly generate k random points as cluster centers.

· Assign each point to the nearest cluster center, where "nearest" is defined with respect to one of the distance measures discussed above.

· Recompute the new cluster centers.

· Repeat the two previous steps until some convergence criterion is met (usually that the assignment hasn't changed).

The main advantages of this algorithm are its simplicity and speed which allows it to run on large datasets. Its disadvantage is that it does not yield the same result with each run, since the resulting clusters depend on the initial random assignments (the k-means++ algorithm addresses this problem by seeking to choose better starting clusters). It minimizes intra-cluster variance, but does not ensure that the result has a global minimum of variance. Another disadvantage is the requirement for the concept of a mean to be definable which is not always the case. For such datasets the k-medoids variants is appropriate. An alternative, using a different criterion for which points are best assigned to which centre is k-medians clustering.

 Fuzzy c-means clustering

In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy logic, rather than belonging completely to just one cluster. Thus, points on the edge of a cluster, may be in the cluster to a lesser degree than points in the center of cluster. For each point x we have a coefficient giving the degree of being in the kth cluster uk(x). Usually, the sum of those coefficients for any given x is defined to be 1:
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With fuzzy c-means, the centroid of a cluster is the mean of all points, weighted by their degree of belonging to the cluster:
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The degree of belonging is related to the inverse of the distance to the cluster center:
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then the coefficients are normalized and fuzzyfied with a real parameter m > 1 so that their sum is 1. So
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For m equal to 2, this is equivalent to normalising the coefficient linearly to make their sum 1. When m is close to 1, then cluster center closest to the point is given much more weight than the others, and the algorithm is similar to k-means.

The fuzzy c-means algorithm is very similar to the k-means algorithm: 

· Choose a number of clusters.

· Assign randomly to each point coefficients for being in the clusters.

· Repeat until the algorithm has converged (that is, the coefficients' change between two iterations is no more than [image: image157.png]


, the given sensitivity threshold) : 

· Compute the centroid for each cluster, using the formula above.

· For each point, compute its coefficients of being in the clusters, using the formula above.

The algorithm minimizes intra-cluster variance as well, but has the same problems as k-means; the minimum is a local minimum, and the results depend on the initial choice of weights. The expectation-maximization algorithm is a more statistically formalized method which includes some of these ideas: partial membership in classes. It has better convergence properties and is in general preferred to fuzzy-c-means.

QT clustering algorithm

QT (quality threshold) clustering is an alternative method of partitioning data, invented for gene clustering. It requires more computing power than k-means, but does not require specifying the number of clusters a priori, and always returns the same result when run several times.

The algorithm is:

· The user chooses a maximum diameter for clusters.

· Build a candidate cluster for each point by iteratively including the point that is closest to the group, until the diameter of the cluster surpasses the threshold.

· Save the candidate cluster with the most points as the first true cluster, and remove all points in the cluster from further consideration. Must clarify what happens if more than 1 cluster has the maximum number of points ?

· Recurse with the reduced set of points.

Locality-sensitive hashing

Locality-sensitive hashing can be used for clustering. Feature space vectors are sets, and the metric used is the Jaccard distance. The feature space can be considered high-dimensional. The min-wise independent permutations LSH scheme (sometimes MinHash) is then used to put similar items into buckets. With just one set of hashing methods, there are only clusters of very similar elements. By seeding the hash functions several times (e.g. 20), it is possible to get bigger clusters

Graph-theoretic methods

Formal concept analysis is a technique for generating clusters(called formal concepts) of objects and attributes, given a bipartite graph representing the relation between the objects and attributes. This technique was introduced by Rudolf Wille in 1984. Other methods for generating overlapping clusters (a cover rather than a partition) are discussed by Jardine and Sibson (1968) and Cole and Wishart (1970).

Spectral clustering

Given a set of data points A, the similarity matrix may be defined as a matrix S where Sij represents a measure of the similarity between points [image: image158.png]


. Spectral clustering techniques make use of the spectrum of the similarity matrix of the data to perform dimensionality reduction for clustering in fewer dimensions.

One such technique is the Normalized Cuts algorithm. It partitions points into two sets (S1,S2) based on the eigenvector v corresponding to the second-smallest eigenvalue of the Laplacian matrix
L = I − D − 1 / 2SD − 1 / 2
of S, where D is the diagonal matrix

	Dii =
	∑
	Sij.


This partitioning may be done in various ways, such as by taking the median m of the components in v, and placing all points whose component in v is greater than m in S1, and the rest in S2. The algorithm can be used for hierarchical clustering by repeatedly partitioning the subsets in this fashion.

A related algorithm is the Meila-Shi algorithm, which takes the eigenvectors corresponding to the k largest eigenvalues of the matrix P = SD − 1 for some k, and then invokes another (e.g. k-means) to cluster points by their respective k components in these eigenvectors.

13.2. Applications of cluster analysis
Biology

In biology clustering has many applications: In imaging, data clustering may take different form based on the data dimensionality. In the fields of plant and animal ecology, clustering is used to describe and to make spatial and temporal comparisons of communities (assemblages) of organisms in heterogeneous environments; it is also used in plant systematics to generate artificial phylogenies or clusters of organisms (individuals) at the species, genus or higher level that share a number of attributes
In computational biology and bioinformatics: 
· In transcriptomics, clustering is used to build groups of genes with related expression patterns (also known as coexpressed genes). Often such groups contain functionally related proteins, such as enzymes for a specific pathway, or genes that are co-regulated. High throughput experiments using expressed sequence tags (ESTs) or DNA microarrays can be a powerful tool for genome annotation, a general aspect of genomics.
· In sequence analysis, clustering is used to group homologous sequences into gene families. This is a very important concept in bioinformatics, and evolutionary biology in general. See evolution by gene duplication.
· In high-throughput genotyping platforms clustering algorithms are used to automatically assign genotypes.
Cluster analysis is widely used in market research when working with multivariate data from surveys and test panels. Market researchers use cluster analysis to partition the general population of consumers into market segments and to better understand the relationships between different groups of consumers/potential customers.

· Segmenting the market and determining target markets
· Product positioning
· New product development
· Selecting test markets (see : experimental techniques)

Educational research

In educational research analysis, data for clustering can be students, parents, sex or test score. Clustering is an important method for understanding and utility of cluster in educational research. Cluster analysis in educational research can be used for data exploration, cluster confirmation and hypothesis testing. Data exploration is used when there is little information about which schools or students will be grouped together. It aims at discovering any meaningful clusters of units based on measures on a set of response variables. Cluster confirmation is used for confirming the previously reported cluster results. Hypothesis testing is used for arranging cluster structure.

13.3. Evaluation of clustering

Evaluation of clustering is sometimes referred to as Cluster validation. This is mainly a measure of similarity between two clusterings. Such a measure can be used to compare how well different data clustering algorithms perform on a set of data. These measures are usually tied to the type of criterion being considered in assessing the quality of a clustering method.

Internal criterion of quality

Clustering evaluation methods that adhere to internal criterion assign the best score to the algorithm that produces clusters with high similarity within a cluster and low similarity between clusters. One drawback of using internal criterion in cluster evaluation is that high scores on an internal measure do not necessarily result in effective information retrieval applications. The following methods can be used to assess the quality clustering algorithms based on internal criterion:

Davies–Bouldin index
The Davies-Bouldin index can be calculated by the following formula:

[image: image159.png]



where n is the number of clusters, cx is the centroid of cluster x, σx is the average distance of all elements in cluster x to centroid cx, and d(ci,cj) is the distance between centroids ci and cj. Since algorithms that produce clusters with low intra-cluster distances (high intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will have a low Davies-Bouldin index, the clustering algorithm that produces a collection of clusters with the smallest Davies–Bouldin index is considered the best algorithm based on this criteria.

Dunn Index
The Dunn index aims to identify dense and well-separated cluster. It is defined as the ratio between the minimal intra-cluster distances to maximal inter-cluster distance. For each cluster partition, the Dunn index can be calculated by the following formula.
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where d(i,j) represents the distance between clusters i and j, and d'(k) measures the intra-cluster distance of cluster k. The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, such as the distance between the centroids of the clusters. Similarly, the intra-cluster distance d'(k) may be measured in a variety ways, such as the maximal distance between any pair of elements in cluster k. Since internal criterion seek clusters with high intra-cluster similarity and low inter-cluster similarity, algorithms that produce clusters with high Dunn index are more desirable.

External criterion of quality

Clustering evaluation methods that adhere to external criterion compare the results of the clustering algorithm against some external benchmark. Such benchmarks consist of a set of pre-classified items, and these sets are often created by human (experts). Thus, the benchmark sets can be thought of as a gold standard for evaluation. These types of evaluation methods measure how close the clustering is to the predetermined benchmark classes. However, it has recently been discussed whether this is adequate for real data, or only on synthetic data sets with a factual ground truth, since classes can contain internal structure, the attributes present may not allow separation of clusters or the classes may contain anomalies.[17]
Some of the measures of quality of a cluster algorithm using external criterion include:
Rand measure
The Rand index computes how similar the clusters (returned by the clustering algorithm) are to the benchmark classifications. One can also view the Rand index as a measure of the percentage of correct decisions made by the algorithm. It can be compute using the following formula:
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where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number of false negatives. One issue with the Rand index is that false positives and false negatives are equally weighted. This may be an undesirable characteristic for some clustering applications. The F-measure addresses this concern.

F-measure
The F-measure can be used to balance the contribution of false negatives by weighting recall through a parameter [image: image162.png]


. Let precision and recall be defined as follows:
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where P is the precision rate and R is the recall rate. We can calculate the F-measure by using the following formula:
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Notice that when β = 0, F0 = P. In other words, recall has no impact on the F-measure when β = 0, and increasing β allocates an increasing amount of weight to recall in the final F-measure.

Jaccard index
The Jaccard index is used to quantify the similarity between two datasets. The Jaccard index takes on a value between 0 and 1. An index of 1 means that the two dataset are identical, and an index of 0 indicates that the datasets have no common elements. The Jaccard index is defined by the following formula:
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This is simply the number of unique elements common to both sets divided by the total number of unique elements in both sets.

Summary

Cluster analysis is a good way for quick review of data, especially if the objects are classified into many groups. Cluster Analysis provides a simple profile of individuals. Given a number of analysis units, for example school size, student ethnicity, region, size of civil jurisdiction and social economic status in this example, each of which is described by a set of characteristics and attributes. An object can be assigned in one cluster only. Data-driven clustering may not represent the reality because once a school is assignted to a cluster, it cannot be assigned to another one. In k-means clustering methods, it is often requires several analysis before the number of clusters can be determined. It can be very sensitive to the choice of initial cluster centres
Learning Activities
Exercise

SPSS software will be used
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Topic 14. CANONICAL CORRELATION
Introduction

Although multiple correlation analysis is popular for exploring the relationships between a set of categorical variables, canonical Correlation is an additional procedure for assessing the relationship between variables. Specifically, this analysis allows us to investigate the relationship between two sets of variables. For example, an educational researcher may want to compute the (simultaneous) relationship between three measures of scholastic ability with five measures of success in school. A sociologist may want to investigate the relationship between two predictors of social mobility based on interviews, with actual subsequent social mobility as measured by four different indicators, and Canonical Correlation would be the appropriate method of analysis.
Learning Outcome
Upon completing this topic, the students will be able to:

· Explain Key terms used both in used in Canonical analysis
· Understand the concepts of Canonical correlations
· Relate canonical analysis with other multivariate statistical analysis
Key terms

Canonical function coefficient, likelihood ratio test, outliers, eigenvalues
14.1. Concepts and Statistics of Canonical analysis

Canonical analysis is a multivariate technique which is concerned with determining the relationships between groups of variables in a data set. The data set is split into two groups, let's call these groups X and Y, based on some common characteristics. The purpose of Canonical analysis is then to find the relationship between X and Y, i.e. can some form of X represent Y. It works by finding the linear combination of X variables, i.e. X1, X2 etc., and linear combination of Y variables, i.e. Y1, Y2 etc., which are most highly correlated. This combination is known as the "first canonical variates" which are usually denoted U1 and V1, with the pair of U1 and V1 being called a "canonical function". The next canonical function, U2 and V2 are then restricted so that they are uncorrelated with U1 and V1. Everything is scaled so that the variance equals 1. One can also construct relationships which are made to agree with constraint restrictions arising from theory or to agree with common sense/intuition. These are called maximum correlation models. (Tofallis, 1999). This linear combination, or "root," is extracted and the process is repeated for the residual data, with the constraint that the second linear combination of variables must not correlate with the first one. The process is repeated until a successive linear combination is no longer significant.  A canonical variable is a linear combination of a set of original variables in which the within-set correlation has been controlled (that is, the variance of each variable accounted for by other variables in the set has been removed). It is a form of canonical variable. There are two canonical variables per canonical correlation (function). One is the dependent canonical variable, while the one for the independents may be called the covariate canonical variable.
14.2. Assumptions

Sample sizes. Stevens (1986) provides a very thorough discussion of the sample sizes that should be used in order to obtain reliable results. As mentioned earlier, if there are strong canonical correlations in the data (e.g., R > .7), then even relatively small samples (e.g., n = 50) will detect them most of the time. However, in order to arrive at reliable estimates of the canonical factor loadings (for interpretation), Stevens recommends that there should be at least 20 times as many cases as variables in the analysis, if one wants to interpret the most significant canonical root only. To arrive at reliable estimates for two canonical roots, Barcikowski and Stevens (1975) recommend, based on a Monte Carlo study, to include 40 to 60 times as many cases as variables.

Outliers. Outliers can greatly affect the magnitudes of correlation coefficients. Since canonical correlation analysis is based on (computed from) correlation coefficients, they can also seriously affect the canonical correlations. Of course, the larger the sample size, the smaller is the impact of one or two outliers. Other assumptions include minimal measurement error since low reliability attenuates the correlation coefficient. Canonical correlation also can be quite sensitive to missing data. Unrestricted variance, if variance is truncated or restricted due, for instance, to poor sampling, this can also lead to attenuation of the correlation coefficient. Similar underlying distributions are assumed, the larger the difference in the shape of the distribution of the two variables, the more the attenuation of the correlation coefficient. Multivariate normality is required for significance testing in canonical correlation. Non-singularity in the correlation matrix of original variables. This is the multicollinearity problem, a unique solution cannot be computed if some variables are redundant, thereby approaching perfect correlation with others in the model. A correlation matrix with redundancy is said to be singular or ill-conditioned. Datasets based on survey data, in which there are a large number of questions, are more likely to have redundant items. Enough cases must be included in the analysis to reduce the chances of Type II error (thinking you don't have something when you do). No or few outliers. Outliers can substantially affect canonical correlation coefficients, particularly if sample size is not very large. 

14.3. Interpretation of the results

The fundamental equation for canonical analysis is the canonical matrix M. 
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The picture below shows how the correlation supermatrix can be schematized.
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Canonical coefficients, also called the canonical function coefficient or the canonical weight, are used to assess the relative importance of individual variables' contributions to a given canonical correlation. The canonical coefficients are the standardized weights in the linear equation of variables which creates the canonical variables. The ratio of canonical weights is the ratio of the contribution of the variable to the given canonical correlation, controlling for other variables in the equation

Tests for evaluation of the results
The helio plot is of a single canonical correlation (usually the first one). The plot is formed of two semicircles, with original variables arrayed around the perimeter. The left semicircle lists the dependent correlations of each variable are arrayed around an inner circle. Bars reaching outward represent positive correlations and bars reaching inward represent negative correlations.

The purpose of canonical correlation is to explain the relation of the two sets of variables, not to model the individual variables. For each canonical variate we can also assess how strongly it is related to measured variables in its own set, or the set for the other canonical variate. Wilks's lambda is commonly used to test the significance of canonical correlation. Wilks's lambda is used in conjunction with Bartlett's V, much as in MANOVA, to test the significance of the first canonical correlation. If p < .05, the two sets of variables are significantly associated by canonical correlation. Degrees of freedom equal P*Q, where P = # variables in variable set 1 and Q = # variables in variable set 2. This test establishes the significance of the first canonical correlation but not necessarily the second (Bartlett's V may be partitioned to test the second separately, but this is not directly supported in SPSS).
Likelihood ratio test is a significance test of all sources of linear relationship between the two canonical variables.
The eigenvalues tell the researcher the proportion of variance explained in the data, but they do not differentiate how much variance is explained in each of the two sets of variables. The eigenvalues as computed by SPSS are approximately equal to the canonical correlations squared. They reflect the proportion of variance explained by each canonical correlation relating two sets of variables, when there is more than one extracted canonical correlation. There is one eigenvalue for each canonical correlation. The ratio of the eigenvalues is the ratio of explanatory importance of the canonical correlations (labeled "roots" in SPSS) which are extracted for the given data. There will be as many eigenvalues as there are canonical correlations (roots), and each successive eigenvalue will be smaller than the last since each successive root will explain less and less of the data. 
Summary

In statistics, canonical analysis belongs to the family of regression methods for data analysis. Canonical variate analysis captures a relationship between a set of predictor variables and a set of criterion variables by the canonical correlations ρ1, ρ2, ..., and by the sets of canonical weights C and D.
Learning Activities
Exercise

SPSS software will be used
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