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ABSTRACT 

Researchers are often times confronted with compositional data in insect choice studies. The 

choice of a statistical method to model this type of data is always not obvious. In this study, three 

approaches for analysis of compositional data from choice tests made by the predatory parasitoid 

Cotesia sesamaie Cameron in a four-arm olfactometer was explored using centered, additive and 

isometric log ratio transformations. Oviposition induced plant volatiles (OIPVs), herbivore 

induced plant volatiles (HIPVs), and two controls were tested in the four-arm olfactometer. The 

response variable measured was time spent in each field of the olfactometer, when the time to 

observe the insect was restricted to 12 minutes. The data generated in this study was 

compositional, thus it conveys exclusively relative information and has a constant sum constraint 

such that standard statistical methods of analysis (ANOVA, t-test), cannot be used on this data. 

This study therefore explored the log ratio methodology advocated by Aitchison (1986). CLT, 

ALT, and ILR log ratio transformations were then performed using CoDaPack statistical 

software. Using this methodology, mean differences in olfactometer response of female parasitic 

wasp, Cotesia sesamiae to OIPVs, HIPVs, and control were computed. These findings imply that 

the CLR transformation is probably the best choice for processing raw compositional data prior 

to analysis by standard statistical methods. These results revealed that the, parasitic wasps spent 

much time in olfactometer arm with OIPVs, followed by the olfactometer arm with HIPVs and 

lastly spent least time in the control arm of the olfactometer. More studies need to be conducted 

using the log-ratio methodology on olfactometer bioassay data from a different species of 

parasitic wasps. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background to the study 

Demonstration of responses of insects to their hosts and host habitats is the subject 

matter in insect behavioral studies (Chen-Cheng 2010). Insects respond to different 

olfactory cues like volatiles (chemicals secreted by plants to attract pollinators, 

predators, repel pests and pathogens), host odour and pheromones for mate searching 

and aggregation (Vet & Dicke 1992, Reed et al 1995, and Bruce et al 2009) among 

others. In insect behavioural studies, the researchers measure responses to odours in the 

laboratory using olfactometers and flight tunnels (Noldus et al 1990). There are various 

forms of olfactometers used to detect and measure insect responses to multiple odour 

cues, such as Y-shaped glass tube olfactometer (Janssen et al 1997), four-arm 

olfactometer (Vet et al 1983), T-shaped linear tract olfactometer (Sakuma and Fukami, 

1985), and six-arm olfactometer (Ted et al, 2004).  

 

The Y-shaped olfactometer contains Y-shaped glass tube at its base. During operation of 

this olfactometer, the experimenter introduces the test odour to the insects released at the 

opposite side of the olfactometer using the Y-shaped glass tube. When the insect walks 

towards a particular odourised arm of the olfactometer, it indicates its preference for that 

odour. The T-shaped olfactometer has the mechanism of operation as that of Y-shaped 

olfactometer. The four-arm olfactometer has four distinct odourized fields are created in 

its chamber. The test insect is introduced into the olfactometer chamber through the 
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centre of the odourised fields. In principle, four different odour sources can be tested 

simultaneously, but usually two types of odours are the norm (Tamiru et al., 2011; Said 

et al., 2006). The six-arm olfactometer is similar to the four-arm olfactometer, except 

that one can compare larger number of odour sources and insects can be released in 

groups (Turlings et al., 2004). 

 

The response variables collected in olfactometer experiments are mainly two; the 

number of insects that choose an odourized field at the beginning of the bioassay (first 

choice made by insect) and time spent in each field, where the time to observe the insect 

vary from 1 to 30 minutes (Suazo et al 2003, Gohole et al., 2003, Shepherd et al 2005, 

Oluwafemi et al., 2011, Ukeh, 2008, Addesso et al, 2010, Jonfia-Essien et al 2007), and 

Ninkovic et al, 2011).  

 

When analyzing insect count data from Y-shaped or T-shaped olfactometer bioassays,  

One would use a binomial test to compare the probability of choice in the two arms 

assuming that each insect response is entirely independent of one another and that the 

probabilities are constant across all replicates with the same experimental conditions 

(Sullivan et al 2000). The same principle applies for the four and six-arm olfactometer 

bioassays. In this situation counts data would be assumed to follow a multinomial 

distribution with probabilities P1, P2, P3, P4  and P1, P2, P3, P4, P5, P6 respectively 

(Turlings et al., 2004). Such a model accounts automatically for the dependence between 

the numbers of insects choosing the different arms. Its underlying assumptions are that 
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individual insect act entirely independently of one another and that the Pi are constant 

across all replicates with the same experimental conditions. If these assumptions are 

true, it is possible to model how the probabilities depend on the experimental treatments 

(Turlings et al., 2004). However, when the response is time spent (a continuous variable) 

by insect in each arm, the appearance of the data is that of real numbers. The data 

collected by olfactometer assays is compositional in nature, because the data collected 

from each insect is simply a partition of the total time allocated for each observation 

(Pawlowsky-Glahn et al 2012).  

Compositional data (CoDa) consist of vectors whose components are the proportions or 

percentages of some whole. Their peculiarity is that their sum is constrained to be some 

constant, equal to 1 for proportions, 100 for percentages or possibly some other constant 

say k. In other words, any increase in the value of a data point automatically requires the 

other data points to decrease, demonstrating the “constant sum constraint” of such data 

(Aitchison and Egozcue, 2005). This non-independence of data points restricts the 

application of standard, statistical techniques such as analysis of variance (ANOVA), t-

test, Principal component analysis among others. This is because all these procedures 

implicitly assume a data distribution, independence of data points, as well as absence of 

interactions between data points (Aebischer et al 1993). 

Unfortunately these standard statistical methods are being used for analyzing raw 

compositional data, in disregard of the fact that the sample space (a set of all possible 

outcomes of a variable) is different from the common Euclidean sample space in which 
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those techniques operate (Aitchison & Egozcue, 2005). The results and inferences made 

from such techniques of analysis though some times interpretable may be incorrect 

(Pawlowsky-Glahn et al 2012. To avoid such problems Aitchison (1986), suggested that 

the data be transformed using appropriate transformations, which preserve the geometry 

of compositional data on the simplex (the support space of compositional data). These 

transformations are additive log ratio transformation (ALR), isometric log ratio 

transformation (ILR) and centered log ratio transformation (CLR) the most often used 

(Aitchison 2008). 

Compositional data frequently occur in many disciplines. Examples are compositions of 

pollutants in envirometrics, household budget compositions in economics, blood and 

urine compositions in medicine, food composition in food science and time 

compositional data in insect behavioural studies. The intuition of compositional data 

from olfactometer assays in insect behavioural studies is described below. 

 

Consider a four-arm olfactometer bioassay in which an insect is given 12 minutes in 

total to spend around the arms of an olfactometer. Assume the insect spends 3 minutes in 

one arm, and then only 9 minutes left. The second time the insect ‘makes a decision’; the 

number of minutes available to be spent during the second visit will depend on how 

many minutes were spent during the first visit. The fewer minutes spent during the first 

visit, the more minutes available for subsequent visits, and vice versa, giving rise to 

dependency over visits or time spent. This means the total time T is broken down into 

components t1, t2, t3, t4 given the four-arm olfactometer and this translates into 
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proportion time spent of the total time; p1, p2, p3, p4 to give a total of 1 or 100% 

(Pawlowsky-Glahn & Buccianti 2011). Despite the guiding principles provided by 

Aitchison (1986) for handling compositional data, the application of such principles for 

compositional data analysis especially in the biological sciences is still patchy and many 

researchers are unaware of the appropriate concepts for analysis of compositional data. 

 

1.2 Statement of the Problem 

The choice of appropriate statistical method for the evaluation of the response “time 

spent” from olfactometer studies is not always straightforward. In two choice instances, 

the raw data had mistakenly been analyzed using paired t-test or its non-parametric 

counterparts, or analyzed as percentages using Chi-square Addesso et al., (2010). While 

Jan de Kogel et al., (1999) used a binomial test for analysis of the same data type. For 

multiple choice instances, Reed (1995), Said et al (2006), and Ninkovic et al (2011), 

used Kruskal-Wallis / Wilcoxon rank test, Freidman ANOVA and ANOVA respectively 

on the raw compositional data. While Ukeh (2008) used a pair wise t-test to compare the 

means. Such standard statistical methods designed for unconstrained data are not 

appropriate for raw compositional data, owing to their sample space and would 

undoubtedly lead to inappropriate inferences (Aebischer et al 1993). This study explored 

the log ratio methodology developed by Aitchison, (1986) for analysis of compositional 

data from olfactometer bioassays. 
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1.3 Objectives 

1.3.1 General Objective  

To investigate log ratio methodology in the analysis of olfactometer compositional data 

and provide guidance in data transformation and analytical procedures, to researchers 

engaged in insect behavioural studies. 

 

1.3.2 Specific Objectives 

i. To investigate the log-ratio transformations in the analysis of compositional data 

from olfactometer bioassays 

ii. To determine the mean time spent by Cotesia sesamiae Cameron in the OIPVs, 

HIPVs, and control arms of the olfactometer bioassay 

1.4 Hypotheses 

i. H0: There is no difference between the mean times spent in the olfactometrer 

arms containing OIPVs, HIPVs and Control. 

1.5 Significance of the Study 

This study acts as a benchmark for researchers encountering compositional data. It has 

teased out Centered log-ratio transformation for processing compositional data as 

advocated by Aitchison. It has also brought attention to CoDapack, freely available 

statistical software for compositional data analysis.  
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1.6 Outline of the thesis   

Chapter 1 looked at the background of the study, statement of the problem, research 

objectives, and hypotheses and stated the significance of the study. Chapter 2 presents 

history of compositional data analysis, principles, and sample space of compositional 

data, Aitchison’s log ratio methodology, and a basic description of a four-arm 

olfactometer. Chapter 3 discusses the sources of insects’ parasitoids and sources of 

volatiles used in the study, describes four-arm olfactometer bioassay and the statistical 

methods used in the study. Chapter 4 presents and discusses the results; finally, in 

Chapter 5 conclusions and recommendations are given. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1. History of compositional data analysis 

Compositional data is defined as the data which consists of vectors whose components 

are proportions or percentages of some whole Aitchison (1986). Summation of these 

data usually results in 1 or 100 for proportions and percentages respectively.  Aitchison 

& Egozcue (2005) paper shows that such vector of compositional data have mistakenly 

been taken as real vectors in statistical analysis with disregard of nature that this data is 

constrained and hence not amenable for analysis by statistical techniques designed for an 

unconstrained data. The result of this inappropriate analysis may have led to 

inappropriate inferences as well. The inappropriateness of standard statistical methods 

designed for unconstrained data stems from the fact that the sample space for 

compositional data is not the same with that of Euclidean space associated with real 

vectors (Pawlowsky-Glahn et al 2011). Despite of the warnings by Chayes (1960) in 

Aitchison and Egozcue (2005), regarding the use of standard statistical methods 

designed for Euclidean space for analysis of compositional data, the trend has continued 

unabated. Below is a break down into four phases the historical attempts to model 

compositional data.  

 

In the phase before 1960, statisticians and scientists were using standard multivariate 

statistical methods of analyses, which by default are tailored for statistical analysis of 

data with real sample space/ Euclidean sample space (Aitchison 2003. These standard 
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multivariate techniques of analysis were employed indiscriminately for analysis of any 

data set regardless of whether its sample space was appropriate for the method or not. A 

case in point was the use of standard correlation analysis for compositional data vectors. 

Such methods has no inbuilt features to model constrained/compositional data, therefore 

were not suitable for analysis of compositional data in its raw form. 

 

In Phase two, the use of standard multivariate statistical methods of analysis came under 

criticism. Mainly due to the challenge in interpretation of product-moment correlation 

between components of a geochemical composition, especially in regard to the negative 

bias; a distorting factor which occurred during interpretation of results Chayes (1960) 

and Sarmonov (1959) in Pawlowsky-Glahn et al (2011). These critisms were directed to 

those applying standard multivariate statistical methods for analysis of compositional 

data in the field of geology. While in the field of biology, Mosimann (1963) in 

Pawlowsky-Glahn et al (2011) extended the criticism of Chayes and Sarmonov for 

biological applications. It is however regrettable that in spite of all these critisms the 

application of standard statistical methods of analysis on constrained data has continued 

with the approach of distorting standard statistical methods; rather than adopting an 

appropriate method of analysis (Aitchison & Egozcue 2005).  

 

Phase three is characterized by the work by Aitchison (1982) who noted that 

compositions provide information about relative, not absolute, values of components. In 

other wards every statement about a composition can be stated in terms of ratios of 



10 
 

components. During this phase log ratios were perceived to be easy to handle 

mathematically as compared to ratios and therefore transformations using additive log 

ratio and centred log ratio transformation methodology became immensely popular in 

the analysis of constrained / closed data (Aitchison 1986). What was unique in those log 

ratio transformations was that, they were capable of converting compositional data from 

the simplex sample space into real / Euclidean sample space. This provided the 

possibility of using standard statistical techniques for analysis of log ratio transformed 

data (Aitchison 2003). The advantages of the log ratio methodology of processing 

compositional data before analysis by standard statistical methods of analysis were 

twofold: Inferences obtained would be translatable to their original compositional 

statements, and it converted compositional data from simplex sample space to real 

Euclidean space (Pawlowsky-Glahn et al 2011). 

 

The fourth phase in compositional data analysis began after the paper by Billheimer et 

al., (1997) as cited in Pawlowsky-Glahn et al., (2011). In this phase compositional data 

is analysed in the raw form by applying operations such as perturbing, powering. The 

authors noted that when the above operations are applied on the raw vectors of 

compositional data the analysis would precede without the use of any log ratio 

transformations as advocated in the third phase above. For the sake of this study the log 

ratio methodology advocated by Aitchison (19860 was used in the analysis of 

compositional data. In the sections below are given brief descriptions of the principles 
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for compositional data analysis, the sample space for compositional data analysis and 

log ratio transformations for processing raw compositional data. 

 

2.2 Principles of Compositional data analysis 

These are conditions, which must be fulfilled during analysis of compositional data by 

any statistical method. They include the following: 

 

Principle of scale invariance: According to (Aitchison 2003), this principle states that, 

‘‘when a problem is compositional, the sizes of the specimens are irrelevant’’. Aitchison 

has illustrated this principle with an example with two specimen vectors 

( )0.4,4.2,6.1=w  and ( )5.7,5.4,0.3=W . These vectors represent weights of the three 

parts (a, b, c) of two specimens of total weight 8 grams and 15 grams, respectively. This 

principle means that, the above vectors have the same composition with their differing 

weights taken account of by the scaling relationship given as .
8

15
wW 







=

 

 

Principle of sub compositional coherence: This principle states that sub compositions 

should behave as orthogonal projections do in conventional real analysis (Aitchison 

2003). Below is an example from Aichison to illustrate this principle. Consider scientist 

A and B working on soil samples divided into aliquots. Scientist A records a 4-part 

composition (animal, vegetable, mineral, water); while scientist B first dries each aliquot 

without recording the water content and obtains a 3-part composition (animal, vegetable, 



12 
 

and mineral). According to the above principle the 3-part composition of scientist B 

[ ]321 ,, sss for an aliquot should be a sub composition of scientist A’s 4-part 

composition [ ]4321 ,,, xxxx . This implies that any compositional statements that A and B 

make about the common parts; animal, vegetable, and mineral must agree. Therefore, it 

is possible for one to analyze data from a sub-composition and then extend the 

inferences to the whole composition. This has advantages because it helps in optimizing 

resources especially if obtaining samples for the whole composition is expensive.  

  

2.3 Compositional data and sample space 

In any statistical analysis it is important to identify the sample space which will 

represent the data (Aitchison 2008). Therefore in order to analyse compositional data 

there is need to recognise its sample space. Below is a typical compositional data vector. 

[ ]Dxxxx ,...,, 21= ,                                                                                                        (2.1)   

This vector is defined as a D-part composition when all its components are strictly 

positive real number, and carry only relative information (Chayes, 1971) as cited in 

Pawlowsky-Glahn et al (2011). This implies that the sample space for compositional 

data occurs in a simplex as seen in equation (2.2). 

[ ]{ }1;...,,2,1,0/...,,, 121 =Σ=>== = i

D

iiD

D
xDixxxxxS                                               (2.2) 

where D
S = parts. 

The vector of D real positive component is given by: 

[ ] D

DzzzZ +ℜ∈= ...,,, 21                                                                                                 (2.3) 
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where (zi>0 for all i= 1, 2, D) 

The closure of Z is defined as: 

( ) 








∑∑∑
=

=== i

D

i

D

i

D

ii

D

i z

zK

z

zK

z

zK
ZC

11

2

1

1 .
...,,

.
,

.
.                                                                            (2.4) 

The results of these equations are the same vectors rescaled so that all the components 

sum to a constant (C). This therefore calls for log ratio transformations which have the 

ability to open this type of data from its closed sample space (Equation 2.4) to the 

Euclidean sample space (Equation 2.5). 

( ) 2

1

∑
=

−=
s

i

ii caD                                                                                                            2.5 

 

2.4 Log-ratio statistical method for compositional data analysis 

The method of log-ratio analysis for compositional data problems arose in the 1980’s out 

of the realization of the importance of the principle of scale invariance Pawlowsky-

Glahn et al (2011). The initial approach followed when analyzing compositional data in 

regards to the principle of scale invariance was to use ratios; but due to the awareness 

that logarithms of ratios are mathematically more tractable than ratios led to the 

advocacy of a transformation technique-involving log-ratios of components (Aitchison 

1986). The three log ratio transformations appropriate for compositional data are briefly 

described below: 
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 Additive Log Ratio (ALR) Transformation: This transforms raw compositional data 

from simplex to real space/Euclidean space. This log ratio transformation is also capable 

of performing its inverse transformation that is from real space/Euclidean space back to 

the simplex, with its inverse ALR-1 (Aitchison 2003). The distinguishing feature of ALR 

transform from the other log ratio transformations is that, it maps a composition in the 

D-part Aitchison simplex none isometrically to a D-1 dimensional Euclidean vector. As 

it maps, the last part is treated as a common denominator of the others. This has 

implications in that if the part in the denominator is changed; different ALR 

transformations would be obtained (Equation 2.6) 

 ( ) ,log...loglog 121
































== −

D

D

DD x

x

x

x

x

x
xalry                                                           (2.6) 

in equation (2.6), the ratios involve the division of each of the first D-1 components by 

the final component. 

 The inverse transformation DD
SRALR →−− 11 :  is 

( ) ( ) ( ) ( )[ ],1exp...expexp 121

1

−
− == DyyyCyalrx                                                           (2.7) 

where C denotes the closure operation (Aitchison 2003). 

 In the transformed state (Equation 2.6), the data can then be analyzed by all standard 

statistical methods of analysis not relying on a distance. This therefore means that 

statistical methods such as ANOVA and t-test should not be used for analysis of ALR 

transformed data. The interpretation of the results from ALR transformed data is 

relatively simple, since the relation to the original D-1 first parts is preserved. Another 

weakness of ALR transformation is that, it is not an isometric transformation from the 
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simplex. This weakness could be solved by use of an appropriate metric with oblique 

coordinates in real ALR-space, but that is not a standard practice (Aitchison et al 2005). 

In case of situations were distance is a vital concept in the analysis a CLR or ILR 

transformations described below should be applied before analysis.  

 

Centered log ratio (CLR) transformation:  

DD
USCLR →:  , unlike the ALR, transformation can map a composition in the D-part 

Aitchison simplex isometrically to a D-1 dimensional Euclidean vector (equation 2.8). 
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where [ ]{ }0...:... 11 =+= DD

D
uuuuU                                                                          (2.9) 

The inverse of CLR is DD
SUCLR →− :1  which takes the form of 

( ) ( )[ ]DzzCx exp...exp 1=  just like the ALR above, the CLR takes the composition to the 

Euclidean sample space hence opening up the possibility of using standard 

unconstrained statistical methods of analysis Aitchison, (2003). A prominent weakness 

of the CLR transformation is that, the orthogonal references in its subspace are not 

obtained in a straightforward manner Fernandez et al (2011) in Egozcue et al (2003). 

 

Isometric log ratio transformation: due to the above shortcomings posed by the ALR 

and CLR transformations, Egozcue et al (2003) came up with isometric log ratio ILR 

transformation to counter those shortcomings. Like ALR and CLR, the ILR can transform 

the data from simplex to real space according to isometric log ratio transformation or its 
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inverse. The ILR transform like CLR maps a composition in the D-part Aitchison-

simplex isometrically to a D-1 dimensional Euclidian vector (equation 2.10). Once the 

data is ILR transformed it can then be analyzed in this transformed state by all standard 

statistical methods of analysis. The only problem will be the difficulty involved during 

the interpretation of the results, since there is no one-to-one relation between the original 

parts and the transformed variables Egozcue et al, (2003).  

( ) ( ) ,..., 1
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−
− ∈== D

D Ryyxilty              (2.10)  

Where:- 
 

)( )( 













+

∏

+
=

=

ix

x

ii
y

i

j

i

j

i
1

ln
1

1 1
,                                                                                     (2.11)                                                           

 
and its inverse is:-  
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Equation 2.13 stands for the closure operation Aitchison, (1986) 
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Having looked at the principles, sample space and log ratio transformations, a basic 

description of the four- arm olfactometer that is used to generate the raw compositional 

data is given below. 
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2.5 Four-arm Olfactometer 

A typical four-arm olfactometer is used for measuring responses of insects towards a 

potential host or host habitat. In a four-arm olfactometer, test insects are given an 

opportunity to choose between several different odours simultaneously. When a four-

arm olfactometer is being operated, it creates clearly distinct contiguous odour fields that 

can be easily entered, left, and re-entered by walking insects Vet et al (1983). Figure 2.1 

on the next page shows the four numbered arms of olfactometer chamber. 
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Figure 2.1: A four-arm olfactometer chamber showing odour field and first choice 

line. 

 

Source: Vet et al (1983) 

Note: a = first choice line, b = borderlines odour fields,   direction of flow. 1, 2, 3 

and 4 are olfactometer arms. 
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The freedom of movement given to insects is important because it allows them to 

explore the odour fields presented, sampling freely between areas containing different 

‘attractants’ separated by sharp boundaries. A four-arm olfactometer is fitted with an 

inlet system for solid or fluid odour sources, catching jar to facilitate the testing of 

individual insects, and a sensitive airflow control system which creates sharp boundaries 

between the odour fields Vet et al (1983); (Figure 2.2) 

 

Figure 2.2: A four-arm olfactometer  

Source: Vet et al (1983)  
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When using a four arm olfactometer bioassays, the insects are tested individually by 

setting up experimental odour fields up in the chamber at  a specified overall flow rate of 

180 mL/min  (Ninkovic et al 2011), 250 mL/min  (Suazo et al 2003), 300 mL/min  (Vet 

et al 1983), 400 mL/min (Jonfia-Essien et al 2007) and 800 mL/min (Ukeh 2008). The 

insect to be tested is introduced through a disconnected 50 mm long Teflon tube leading 

up to the hole in the centre of the olfactometer chamber (Vet et al 1983). The 

experimenter then reconnects the extractor tube and re-starts the airflow. In this set up a 

vertical entry, tube will expose the test insect to odours in the olfactometer chamber. 

When the test insect reaches the floor of the chamber, it will walk towards one of the 

four odourized fields. Therefore, it will move at freedom over the floor or on the ceiling 

and either stay in the same odour field, or leave it, sample the others and select one of 

them. When the insect crosses one of the lines of the arbitrary first choice square (Fig 

2.1) a record of first choice made is taken. The first choice normally correlates positively 

to the sector of the entry tube via which the insect first approached the chamber floor. 

Once the experimenter has finished recording the first choice, the parasitoid will be 

allowed to spend a given amount of time in the olfactometer, such as 1 minute Suazo 

(2003), 10 minutes (Ninkovic et al.,2011; Ukeh 2008; Vet et al., 1983), 20 minutes 

Jonfia-Essien et al (2007). During the bioassay period, data were recorded and analyzed 

with a computer software package (OLFA 33100 Udine, a computer program OLFA 

(33100 Udine, Italy) Ukeh (2008).  

 The four-arm olfactometer is usually used to test, 10 insects (Ninkovic et al., 2011, 

Ukeh 2008), 40 insects Vet et al (1983) different insects in each odour situation. During 
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time of experimentation, the whole system is usually rotated at 90oC after every ten to 

fifteen insects, and at that point, the chamber is cleaned out with 96% ethanol. In 

between each individual odour test, the whole process is dismantled, thoroughly washed 

with hot detergent, and swabbed with ethanol.  

 

2.6 Transformations and analysis of Compositional Data in Chemical Ecology 

Find below a summary of reviewed papers in chemical ecology and their methods of 

statistical analysis of compositional data: 

 Bruce et al (2009) in their study of parasitic wasps did not transform raw compositional 

data. The authors used a Y-tube olfactometer to test the response of three different egg 

parasitoid species; (Scilionids telenomus Busseolae Gahan, Telenomus isis Polarszek, 

and Trichogrammatid trichogramma Bournieri Pintureau) to calling and non-calling 

females of the noctuids Busseola fusca (Fuller), sesamia calamistis (Hampson), and 

Sesamia nonagrioides (Lefelvre). The data was analyzed using Kruskal-Wallis test, 

Mann-Whitney U-test was used to compare mean onset of calling time between stem 

borers’ species. They also used chi-square test to assess the first choice of each 

parasitoid. Another study conducted by Jonfia-Essien et al., (2007) to measure the 

olfactometer responses of Tribolium casteneum (Herbst) to six major volatiles of cocoa 

beans, using a Peterson olfactometer. Data was analyzed using ANOVA, after 

performing a logarithmic transformation. In the study conducted by Said et al., (2006) 

while attempting to evaluate the adoption of a four-arm olfactometer for large insects. 

The authors performed a logarithmic transformation before analyzing data using a one-
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way ANOVA to compare mean times spent in each of the four fields, followed by New 

man-Keuls multiple comparison tests. Ninkovic et al (2010) tested the responses of adult 

Coccinella septempunctata (Linnaeus) to odours of barley genotypes, genotype 

mixtures, and barley genotypes using a two-arm olfactometer. They also used a four-arm 

olfactometer to test the preference of C.septempunctata (Linnaeus) for odours from 

single genotypes. In their analysis, they used Wilcoxon matched pairs tests to analyze 

raw data generated from two-arm olfactometer bioassays, and Friedman ANOVA rank 

test for analyzing data from four-arm olfactometer. Where a significant difference was 

found, multiple comparisons between treatments were performed using the Wilcoxon-

Nemenyi-McDonald-Thompson test. Reed et al (1995) tested the response of mated 

parasitoid Diaeretiella rapae (M’Intosh) (Hymenoptera: Aphidiidae) females to odours 

from wheat, cabbage, and plant-host complexes. They used a four-arm olfactometer and 

data analysis was done using Kruskal-Wallis test; Wilcoxon matched pair’s tests. Ukeh 

(2008) evaluated the essential oils extracted from Aframomum melegueta (K.Schum) 

seeds and Zingiber officinale (Ginga) rhizomes for their repellency against Rhizopertha 

dominica in a four-arm air flow olfactometer. The parameters assessed were time spent 

and number of entries or visits made by male and female adults into treatment and 

control arms of the olfactometer. No data transformation was done; a pair-wise t-test 

was used to test for significant differences between the treated arm and the mean of the 

control arms. 
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 Apparently, there seems to be no evidence of adaption of log ratio methodology in 

chemical ecology as advocated in Aitchison (1986). The above studies suggest that, 

scientists do check their compositional data for normality and homogeneity of variances. 

Once the data is normal or variances are, homogeneous it would be analyzed using 

ANOVA, t-tests, or non-parametric tests for data not obeying the assumption of 

normality and homogeneity of variances. Although transformations are sometimes used, 

they are not the appropriate ones for changing the sample space from the Simplex to the 

Euclidean sample space. However, log ratio methodology is slowly gaining ground in 

other disciplines of biology as seen in Alison et al (2009; Korhoňova et al (2009) who 

after finding that, proportions of the different chemical compounds were not 

independent within a sample, performed a centered log ratio transformation according to 

Aitchison, (1986), Pawlosky-Glahn and Egozcue, (2006). After log-ratio transformation, 

the authers did principal components analysis on their data. Veverka et al., (2012), also 

applied log-ratio methodology to make standard statistical analysis by principle 

components possible. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Introduction 

Chapter 3 gives the source of parasitic wasps  C. sesamiae Cameron, herbivore induced 

plant volatiles (HIPVs), and oviposition induced plant volatiles (OIPVs). It also gives 

the description of four-arm olfactometer bioassay, data collection methods, and 

statistical methods employed in this study.  

 

3.2 Source of parasitic wasps Cotesia sesamiae Cameron (Hymenoptera: 

Braconidae)   

The C.sesamiae, parasitic wasps for Chilo partellus used for this study were reared in a 

bio-containment unit at International Centre of Insect Physiology and Ecology, Mbita 

field station. Newly emerged adults of C.sesamiae were transferred into plastic jars (1.0 

litre capacity) fitted with brass mesh for ventilation. A cotton swab soaked in 50% honey 

was used for feeding adult parasitic wasps. The colony was maintained in a controlled 

environment chamber at 25oC and 65% Relative Humidity (RH) and Day Lengh (LD) 

12:12 h, 50000 lux). From this population mated 2-3-day-old females were selected 

using an aspirator for the bioassays and all test insects were naïve in that they had never 

encountered a host or plant as an adult. 
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3.3 Odour sources 

The odours used for these bioassays were pre-processed in the Department of Chemical 

Ecology at icipe Thomas Odhiambo, Mbita field station. The processed odours sources 

were contained in jars designed for used in a four-arm olfactometer assay. They 

consisted of volatiles from accessions of Cuba 91maize leaves (HIPVS) and volatiles 

from from C.partellus eggs obtained from icipe Thomas Odhiambo, Mbita field station, 

plus leaves of Cuba 91maize cultivar complex (OIPVs). 

 

3.4 Olfactometer bioassays 

The olfactometer used in this bioassays was similar to the one designed by (Vet et al., 

1983). This type of olfactometer is designed for testing odour responses of small diptera 

and hymenoptera. Prior to olfactometer bioassay tests with the test odours, a system bias 

check was conducted by visualized odour fields using smoke generated by Ammonium 

hydroxide (NH4OH) and Hydrochloric acid (HCL). During this time, the compressor 

was adjusted until a uniform field of smoke from Ammonium Hydroxide (NH4OH) and 

Hydrochloric acid (HCL) was obtained. This was obtained at 40 Kilo Pascal (KPa); and 

airflow rate was at 300 ml/min at this pressure. The boundaries of each odour field were 

marked on the external surface of the olfactometer (Figure 2.1). Having attained the 

optimum pressure and airflow rate for uniform odour fields, another system bias check 

was conducted on the olfactometer system by testing the responses of 20 parasitoids to 

the humidified air in all four quadrants. The data collected was analyzed using one-way 

ANOVA; there was no significant difference between the four means. 
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After ruling out any system bias, the olfactometer bioassays were conducted using 

odours from oviposition induced plant volatiles (OIPVs); herbivore induced plant 

volatiles (HIPVs), and humidified air (Control). The olfactomer was illuminated by 

providing a 20-watt circular fluorescent lamp (3700 lux) 20 cm above it. An airflow 

meter (Cole-Parmer: PO4-N11202 G) maintained an airflow rate of 300 ml/min through 

each of the four quadrants. In order to maintain that flow rate a vacuum pressure pump 

placed on the floor, pulled room air through charcoal filters before entering the 

olfactometer chamber and then was vented into a fume hood.  

 

Experiments were conducted from (0900hrs -1400hrs) at room temperature of 22.50C for 

two consecutive days. Parasitoids to be tested were introduced singly into the 

olfactometer exposure chamber through the insect introduction tube port in the top of the 

olfactometer chamber (Figure 2.2). The experiment was replicated 20 times and during 

each bioassay 1 parasitic wasps was used. Once in the chamber, the parasitic wasps were 

given 12 minutes to make their choices between the four airfields. The amount of time 

spent in each odour field and the first airfield chosen was recorded for each insect by 

program Olfa a computerized program for collection and preliminary analysis of insect 

behavioural data. This summary data from program Olfa was saved in the computer and 

later used for further processing and statistical analysis. 
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3.5 Statistical analyses 

The linear effect model was fitted to the centered log ratio transformed data of 

C.sesamiae. The linear model was 

  ijiijy εαµ ++=                                                                                                         (3.1) 

where: =ijy  Time spent in Olfactometer arm (log ratio transformed) 

            =µ  Overall mean 

            
=ijε  Treatment effect (error)        

Prior to statistical analysis, the data from each of the treated arms plus the average of the 

two control arms generated by program Olfa  above were converted to proportions of the 

total time spent. This was to account for dependence over time spent. In order to bring 

data to the real sample space amenable to standard statistical analysis techniques, log 

ratio transformations were conducted using Coda pack software (Cosmas-Cufi et al., 

2011).  

All the analyses were done using the ‘R’ data analysis software, version 2.12.3 (R 

Development Core Team, 2011). The numerical variables were checked for normality 

and equality of variances using formal tests. Graphical displays of response variate data 

were done using box plots and basic diagnostic plots. ANOVA model was used to 

evaluate data from centered log ratio transformed data, followed by Tukey multiple 

comparison tests. The data from additive and isometric log ratio transformations were 

analyzed using Kruskal-Wallis; Wilcoxon signed rank test. The logical framework 

(Figure 3.1) below, informed these analyses. 
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Figure 3.1: Conceptual model of log ratio methodology for analysis of 

compositional data 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, the results of log ratio transformations of raw compositional data from 

four-arm olfactometer bioassay are tabulated; descriptive and inferential statistics of the 

centered, additive, and isometric log ratio transformed data from four arm olfactometer 

bioassays are also given.  

 

4.2 Results 

4.2.1 Log ratio transformation of original compositional data 

Table 4.2.1, 4.2.2 and 4.2.3 Show centered, additive and isometric log ratio transformed 

datasets of oviposition induced plant volatiles, and herbivore induced plant volatiles and 

the control. The transformations were made from the original compositional data 

(Appendix C). 
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Table 4.2.1: Original and Centered log-ratio transformed data on time spent for 

the three treatments in a four-arm olfactometer assay as produced by 

CoDapack software. 

Orig (OIPVs) Orig (HIPVs) Orig (Control) Clr (OIPVs) Clr (HIPVs) Clr (Control) 

0.37 0.14 0.17 0.699 -0.273 -0.079 

0.41 0.16 0.14 0.833 -0.108 -0.242 

0.34 0.24 0.18 0.725 0.377  0.089 

0.51 0.18 0.12 0.912 -0.13 -0.535 

0.36 0.28 0.12 0.634 0.382 -0.465 

0.44 0.26 0.15 0.670 0.144 -0.407 

0.41 0.25 0.12 0.839 0.345 -0.389 

0.27 0.24 0.11 0.283 0.166 -0.615 

0.38 0.19 0.18 0.867 0.174  0.120 

0.20 0.30 0.19 0.085 0.49  0.034 

0.19 0.26 0.21 0.033 0.347  0.133 

0.37 0.11 0.15 0.696 -0.517 -0.207 

0.2 0.26 0.17 0.002 0.264 -0.161 

0.17 0.23 0.20 -0.131 0.172  0.032 

0.31 0.20 0.16 0.411 -0.027 -0.250 

0.35 0.2 0.16 0.649 0.089 -0.134 

0.27 0.25 0.19 0.445 0.368  0.093 

0.26 0.22 0.17 0.286 0.118 -0.139 

0.23 0.19 0.17 0.146 -0.045 -0.156 

0.31 0.14 0.20 0.526 -0.269  0.087 

 
Rows = Proportions of original data and centered log ratio transformed data. 
 
Clr (OIPVs, HIPVs, and Control) = Centered log ratio transformed data from 

oviposition induced plant volatiles, herbivore induced plant volatiles, and control. 

Orig (OIPVs, HIPVs, and Control) = Original data from oviposition induced plant 

volatiles, herbivore induced plant volatiles, and control. 
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Table 4.2.2: Original and Additive log ratio transformed data on time spent for the 

three treatments in a four-arm olfactometer as produced by CoDapack 

software.  

Orig 
(OIPVs) 

Orig 
(HIPVs) 

Orig 
(Control) 

Alr 

(OIPVs) 
Alr 

(HIPVs) Alr (Control) 

0.37 0.14 0.17 0.778 -0.194 -0.569 

0.41 0.16 0.14 1.075 0.134 0.047 

0.34 0.24 0.18 0.636 0.288 -0.469 

0.51 0.18 0.12 1.447 0.405 -1.218 

0.36 0.28 0.12 1.099 0.847 -1.955 
0.44 0.26 0.15 1.076 0.550 -1.299 

0.41 0.25 0.12 1.229 0.734 -1.811 

0.27 0.24 0.11 0.898 0.780 -1.959 

0.38 0.19 0.18 0.747 0.054 1.203 

0.20 0.38 0.19 0.051 0.457 -0.877 

0.19 0.26 0.21 -0.100 0.214 -0.017 

0.37 0.11 0.15 0.903 -0.310 0.047 

0.20 0.26 0.17 0.163 0.425 -0.916 

0.17 0.23 0.20 -0.163 0.140 0.358 

0.31 0.20 0.16 0.661 0.223 -0.333 

0.35 0.2 0.16 0.783 0.223 -0.332 

0.27 0.25 0.19 0.351 0.274 -0.368 

0.26 0.22 0.17 0.425 0.258 -0.417 

0.23 0.19 0.17 0.302 0.111 0.424 

0.31 0.14 0.20 0.438 -0.357 0.368 

 

Rows = Proportions of original and Additive log ratio transformed data. 

Alr (OIPVs, HIPVs, and Control) = Centered log ratio transformed data from oviposition 

induced plant volatiles, herbivore induced plant volatiles, and control. 

Orig (OIPVs, HIPVs, and Control) = Original data from oviposition induced plant 

volatiles, herbivore induced plant volatiles, and control. 



32 
 

Table 4.2.3: Original and Isometric log ratio transformed data on time spent for 

the three treatments in a four-arm olfactometer as produced by 

CoDapack software. 

Orig 
(OIPVs) 

Orig  
(HIPVs) 

Orig 
(Control) 

Ilr 

(OIPVs) 
Ilr 

(HIPVs) Ilr (Control) 

0.37 0.14 0.17 0.238 0.687 -0.988 

0.41 0.16 0.14 0.493 0.665 -1.102 

0.34 0.24 0.18 0.377 0.246 -0.222 

0.51 0.18 0.12 0.756 0.736 -1.283 

0.36 0.28 0.12 0.794 0.178 -0.278 

0.44 0.26 0.15 0.664 0.372 -0.642 

0.41 0.25 0.12 0.801 0.350 -0.757 

0.27 0.24 0.11 0.685 0.083 0.197 

0.38 0.19 0.18 0.327 0.490 -0.708 

0.20 0.30 0.19 0.207 -0.287 -0.804 

0.19 0.26 0.21 0.046 -0.222 -0.855 

0.37 0.11 0.15 0.242 0.858 -1.233 

0.20 0.26 0.17 0.240 -0.186 -0.683 

0.17 0.23 0.20 0.009 -0.214 -0.325 

0.31 0.20 0.16 0.361 0.310 -0.467 

0.35 0.20 0.16 0.411 0.396 -0.640 

0.27 0.25 0.19 0.256 0.055 0.884 

0.26 0.22 0.17 0.279 0.118 0.257 

0.23 0.19 0.17 0.169 0.135 0.163 

0.31 0.14 0.20 0.033 -0.730 0.562 

 
Row= Proportion of raw and isometric log ratio transformed data.  
 

Ilr (OIPVs, HIPVs, and Control) = Centered log ratio transformed data from oviposition 

induced plant volatiles, herbivore induced plant volatiles, and control. 

Orig (OIPVs, HIPVs, and Control) = Original data from oviposition induced plant 

volatiles, herbivore induced plant volatiles, and control.  
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The rationale behind the above transformations was to convert the data from its simplex 

sample space (support space for compositional data) to Euclidean sample space (three-

dimensional space). After log ratio transformations subsequent analysis were conducted 

by parametric or non-parametric methods depending on the results of tests for normality 

and homogeneity of variances. 

 

4.2.2 Descriptive statistics  

The centered, additive, and isometric log ratio transformations were explored 

graphically, with the aid of box plots (Figure 4.2.1, 4.2.2, and 4.2.3). The box plots for 

the centered log ratio transformed data seem to suggest normality (Figure 4.2.1). While 

the box plots for additive and isometric log ratio, transformed data show the contrary 

(Figure 4.2.2 & 4.2.3). All the box plots from the three-log ratio transformations seem to 

suggest that, the parasitoid C.sesamiae Cameron, spent much time in olfactometer arm 

with OIPVs, followed by the olfactometer arm with HIPVs and lastly spent least time in 

the control arm of the olfactometer. 
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Figure 4.2.1: Box plots for time spent by Cotesia sesamiae Cameron in the 

olfactometer bioassay, as produced by R software: Centered log-ratio transformed 

data 
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Figure 4.2.2: Box plots for time spent by Cotesia sesamiae Cameron in the 

olfactometer bioassay, as produced by R software: Additive log-ratio 

transformed data 

 



36 
 

Control HIPVs OIPVs

-1
.0

-0
.5

0
.0

0
.5

Olfactometer choice

 

Figure 4.2.3: Box plots for time spent by Cotesia sesamiae Cameron in the 

olfactometer bioassay, as produced by R software: Isometric log-ratio 

transformed data 
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4.2.3: Inferential statistics for olfactometer bioassay data from cotesia sesamiae  

The log ratio transformed datasets were checked for normality and homogeneity of 

variances. The results indicate that only the CLR transformation was able to normalize 

the data and stabilize the variances (Table 4.2.4). Based on these results subsequent 

analysis were conducted using one-way ANOVA for the CLR transformed data, Kruskal 

Wallis and Wilcoxon sign rank tests for ALR and ILR transformed data.. 

 

Table 4.2.4: Results of tests for assumption of ANOVA as produced by R software 

Test Test-statistic                                                                      Statistic        P.values 

Original data 

Normality Shapiro-Wilk                                             0.9158 0.0005*** 

Homogeneity Bartlett’s 16.5719 0.0003*** 

CLR transformed data 

Normality     Shapiro-Wilk 0.9778 0.3433 

Homogeneity Bartlett’s 2.1965 0.3335 

ALR transformed data 

Normality  Shapiro-Wilk 0.9297 0.0019*** 

Homogeneity Bartlett’s 17.649 0.0001*** 

ILR transformed data 

Normality  Shapiro-Wilk 0.9378 0.0043*** 

Homogeneity Bartlett’s 12.7565 0.0017*** 

 
 Significance codes:  ***' 0.001 '**' 0.01 '*' 0.05. Degree of freedom=2 
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Figure 4.2.4: Basic diagnostic plots for ANOVA model on CLR transformed data 

as produced by R software 
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Based on the results of the normality and homogeneity of variances (Table 4.2.4) 

performed on the centered log ratio transformed data; and the basic diagnostic plots for 

ANOVA model (Figure 4.2.4). It was justifiable to use a one-way ANOVA for analysis 

of centered log ratio transformed data. Having obtained a significant result from the 

ANOVA, Tukey HSD tests were conducted on the centered log ratio transformed data at 

P<0.05. The results for Tukey pair wise comparisons were all significant (Table 4.2.5). 

Table 4.2.5: Multiple comparisons of means: Tukey contrasts 

 

  
                                            Estimate              Std. Error               t value                 Pr (>|t           

 
  OIPVs - Control              0.63994             0.08712                7.346             <0.001 *** 
 
  HIPVs - Control              0.26281             0.08712                3.017               0.0106 *   
  
  OIPVs - HIPVs               0.37713             0.08712                4.329             <0.001 *** 
 

 

 

Significance codes:    '***' 0.001     '**' 0.01      '*' 0.05       

(Adjusted p values reported -- single-step method) 

 

The additive and isometric log ratio transformed datasets were analyzed using Kruskal- 

Wallis test. The results were all significant (Table 4.6). 
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Table 4.2.6: Results for Kruskal Wallis test for additive and isometric log ratio 

transformed data 

 

 
Test                                         Statistic                                       P.values 

 
ALR transformed data 

Kruskal-Wallis                           24.5928                                   4.568e-06***                            

ILR transformed data 

 
Kruskal-Wallis                           19.3341                                   6.334e-05***                        
 

 
Significance codes:  ***' 0.001 '**' 0.01 '*' 0.05. Degree of freedom=2 

 

Owing to the significant test of Wilcoxon sign rank test, the post hoc tests were 

conducted using Wilcoxon sign rank test. The pair wise tests of Wilcoxon sign rank test 

were all significant at P< 0.05 (Table 4.2.7). 
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Table 4.2.7: Results for Wilcoxon signed rank test for additive and isometric log 

ratio transformed data 

Comparison Statistic P.values 

ALR transformed data 

OIPVs-HIPVs 179 0.0042 

OIPVs-Control 196 0.0002 

HIPVs-Control 175 0.0095 

ILR transformed data 

OIPVs-HIPVs 163 0.0296 

OIPVs-Control 198 0.0001 

HIPVs-Control 175                               0.0073 
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4.3 Discussion 

The results for the transformations conducted suggest that, the centered, additive, and 

isometric log ratio transformations were all able to transform raw compositional data 

(Appendix C), to Euclidean sample space (Table 4.2.1, 4.2.2 and 4.2.3). Therefore, 

standard statistical methods of analysis designed to operate in the Euclidean sample 

space could be also be used for analysis of these data in accordance to (Aitchison 2005). 

The same methodology was used by Korhoňova et al., (2009) and Veverka et al., (2012) 

to analyse compositional data from coffee aroma and wine volatiles respectively.  

 

From the box plots (4.2.1, 4.2.2, and 4.2.3), only the centered log-ratio transformed data 

appears to be normal (Figure 4.2.1). Whereas the box plots for additive and isometric log 

ratio, transformed data appear not to show normality (Figure 4.2.2 & 4.2.3). The box 

plots also seem to suggest that the parasitoid C.sesamiae, spent much time in 

olfactometer arm with oviposition induced plant volatiles (OIPVs), followed by the 

olfactometer arm with herbivore induced plant volatiles (HIPVs) and lastly spent least 

time in the control arm of the olfactometer. 

 

The formal tests for ANOVA were consistent with those obtained by descriptive 

statistics; only the centered log-ratio transformed data showed normality. The formal test 

for homogeneity of variances showed that the variances for the centered log-ratio 

transformed data were homogenous. Therefore, this data was analyzed using   



43 
 

 a One-way Analysis of Variance (ANOVA). The justification for use of ANOVA was 

informed by the results of the formal test for ANOVA model (Table 4.2.4); the centered 

log-ratio transformation a part from changing the sample space of the data was also able 

to normalise the data and stabilise the variances. This would be crucial in processing 

compositional data before subsequent analysis by parametric standard statistical 

methods. Centered log ratio transformation does allow the transformed data to be 

analyzed with methods that depend on distance such as ANOVA (Aitchison 2003).   

This is consistent with the works of (Korhoňova et al 2009 and Aebischer et al 1993) in 

analyzing compositional data.  

While for the additive and isometric log ratio transformed data from oviposition induced 

plant volatiles, herbivore induced plant volatiles and that from the control were analyzed 

using Kruskal-Wallis test. The decision to use a nonparametric test was informed by the 

results of tests for normality and homogeneity of variances (Table 4.2.4). Veverka et al., 

(2012) has also noted that isometric log ratio transformation is an effective method of 

processing compositional data, before principal components analysis. 

  

The ANOVA results showed that the data from oviposition induced plant volatiles, 

herbivore induced plant volatiles and the control were significant, with more time spent 

in the OIPVs and HIPVs than in the control arms. This meant that Cotesia sesamiae 

female parasitoid wasps were more attracted to Cuba 91 maize variety with and without 

C.partellus oviposition than the control. 
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The additive and isometric log ratio transformed data were analyzed using Kruskal-

Wallis test due to non-adherence of the transformed data to ANOVA assumptions. The 

result showed a significant difference in result at 0.001 level of significance (Table 

4.2.6). The Kruskal-Wallis test was followed by a post hoc test using Wilcoxon signed 

rank test. When additive log ratio transformed data was analyzed by Wilcoxon test, it 

was able to detect the significant difference between OIPVs and HIPVs at 0.001 level of 

confidence (Table 4.2.7). The same data transformed by isometric log ratio and tested by 

Wilcoxon test   detected a significant difference between OIPVs and HIPVs at 0.05 level 

of confidence (Table 4.2.7). These results indicate that the additive log ratio 

transformation is better than isometric log ratio transformation in processing 

compositional data. 
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CHAPTER 5 

 CONCLUSION, AND RECOMMENDATIONS 

 

5.1 Conclusion 

The results for the transformations conducted show that, the centered, additive, and 

isometric log ratio transformations were all able to transform raw compositional data to 

Euclidean sample space.  

 

Inferential statistic confirmed what was suggested by the descriptive statistics that only 

the centered log-ratio transformed data was normal and the parasitic wasps spent much 

time in olfactometer arm with OIPVs, followed by the olfactometer arm with HIPVs and 

lastly spent least time in the control arm of the olfactometer. 
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5.2. Recommendations 

The study recommends Centered log-ratio transformation for processing compositional 

data from olfactometer bioassays in insect behavioural studies, before employing 

standard statistical methods of analysis and Log ratio transformations should be 

conducted using CoDapack statistical software. 

There is need to do further study on the log-ratio methodology on olfactometer bioassay 

data from a different species of parasitic wasps. 
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APPENDICES 

Appendix A: R. functions used for data analysis using one-way ANOVA 

 
In this appendix an outline of the functions that were used to generate results in chapter 

4 is given.   

 

#MVolatileclr <- read.table("C:/Users/Anthony/Desktop/October/MVolatilesclr.csv",  

  header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE) 

#showData(MVolatileclr, placement='-20+200', font=getRcmdr('logFont'),  

  maxwidth=80, maxheight=30) 

#boxplot(Time.m.~Olfactometer.choice, ylab="Time.m.",  

 xlab="Olfactometer.choice", data=MVolatileclr) 

#AnovaModel.2 <- aov(Time.m. ~ Olfactometer.choice, data=MVolatileclr) 

summary(AnovaModel.2) 

numSummary(MVolatileclr$Time.m. , groups=MVolatileclr$Olfactometer.choice,  

  statistics=c("mean", "sd")) 

.Pairs <- glht(AnovaModel.2, linfct = mcp(Olfactometer.choice = "Tukey")) 

summary(.Pairs) 

 # pairwise tests confint(.Pairs)  

 # confidence intervals cld(.Pairs) 

 # compact letter display old.oma <- par(oma=c(0,5,0,0)) 

plot(confint(.Pairs)) par(old.oma) remove(.Pairs) oldpar <- par(oma=c(0,0,3,0), 

mfrow=c(2,2)) 

plot(AnovaModel.2) par(oldpar) 

plotMeans(MVolatileclr$Time.m., MVolatileclr$Olfactometer.choice,  

  error.bars="se") 
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Appendix B: R. functions used for data analysis using Kruskal Wallis and 

Wilcoxon sign rank test 

 
#Mvolatilesalr <- read.table("C:/Users/Anthony/Desktop/Sept/MVolatilesalr.csv", 

header=TRUE,  sep=",", na.strings="NA", dec=".", strip.white=TRUE) 

#library(relimp, pos=4) 

#showData(Mvolatilesalr, placement='-20+200', font=getRcmdr('logFont'),  

  maxwidth=80, maxheight=30) 

#tapply(Mvolatilesalr$Time.spent, Mvolatilesalr$Treatment, median,  

  na.rm=TRUE) 

#kruskal.test(Time.spent ~ Treatment, data=Mvolatilesalr) 

#data1a <- read.table("C:/Users/Anthony/Desktop/Nov-2012/data1a.csv",       

header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE) 

# library(relimp, pos=4) 

# showData(data1a, placement='-20+200', font=getRcmdr('logFont'), maxwidth=80, 

    maxheight=30) 

# wilcox.test(data1a$OIPVs, data1a$HIPVs, alternative='two.sided', exact=TRUE, 

   Paired=TRUE) 

#wilcox.test(data1a $OIPVs, data1a $Control, alternative='two.sided', exact=TRUE, 

    paired=TRUE)  

# wilcox.test(data1a $HIPVs, data1a $Control, alternative='two.sided', exact=TRUE, 

   paired=TRUE) 

#Ilrdata <- read.table("C:/Users/Anthony/Desktop/Nov-2012/Ilrdara.csv", 

header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE) 
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# library(relimp, pos=4) 
 
#showData(Ilrdata, placement='-20+200', font=getRcmdr('logFont'),  maxwidth=80, 

maxheight=30) 

# wilcox.test(Ilrdata$OIPVs, Ilrdata$HIPVs, alternative='two.sided',  exact=TRUE, 

paired=TRUE) 

# wilcox.test(Ilrdata$OIPVs, Ilrdata$Control, alternative='two.sided',   exact=TRUE, 

paired=TRUE) 

# wilcox.test(Ilrdata$HIPVs, Ilrdata$Control, alternative='two.sided',   exact=TRUE, 

paired=TRUE) 
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Appendix C: Raw compositional data from olfactometer bioassay 

OIPVs HIPVs 
Control 

 

0.37 0.14 0.17 

0.41 0.16 0.14 

0.34 0.24 0.18 

0.51 0.18 0.12 
0.36 0.28 0.12 
0.44 0.26 0.15 
0.41 0.25 0.12 

0.27 0.24 0.11 

0.38 0.19 0.18 

0.02 0.03 0.19 

0.19 0.26 0.21 

0.37 0.11 0.15 

0.02 0.26 0.17 

0.17 0.23 0.02 

0.31 0.02 0.16 

0.35 0.02 0.16 

0.27 0.25 0.19 

0.26 0.22 0.17 

0.23 0.19 0.17 

0.31 0.14 0.17 

   



57 
 

Appendix D: Analysis of variance results of four- arm olfactometer responses of 

female Cotesia sesemiae to different odour sources. 

 

  
                                            Df          Sum Sq         Mean Sq      F value           Pr (>F)     

 

Olfactometer.choice        2           4.1388         2.0694          27.266        4.914e-09 *** 

    Residuals                         57         4.3260         0.0759   

   Total                                 59         8.4648       

Signif.   Codes:    0   '***' 0.001      '**' 0.01     '*' 0.05 '.' 0.1 ' ' 1  

 
Appendix E: Multiple comparisons of means: Tukey contrasts 

  
                                            Estimate              Std. Error               t value                 Pr (>|t           

 
  OIPVs - Control              0.63994             0.08712                7.346             <0.001 *** 
 
  HIPVs - Control              0.26281             0.08712                3.017               0.0106 *   
  
  OIPVs - HIPVs               0.37713             0.08712                4.329             <0.001 *** 

 


