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a b s t r a c t

Land use/cover (LULC) change is a major concern in Africa’s river basins and policy makers, environmen-
talists and other stakeholders tackling biodiversity and sustainable development issues in these water-
sheds require accurate information on past, present and future LULC projections to develop
management strategies for the concerned watersheds. This study assessed the historical, current and
future LULC changes in Mpologoma catchment. Remote sensing and supervised classification were used
to analyze 33-year multitemporal LULC changes in Mpologoma catchment while future patterns for the
next two decades were predicted using the Cellular Automata-Markov modelling technique in TerrSet’s
Land Change Modeler. Initially, in 1986, the catchment was dominated by grassland (32.08%). However,
most grassland (92.77%) was gradually converted to subsistence farming (75%) and built-up (15.7%).
Grassland, woodland and wetland annually declined at a rate of 5.52%, 2.47% and 0.63% respectively
while farmland and built-up expanded at 9.32% and 6.22% respectively and by 2019 subsistence farming
was the dominant class (53.16%). Prediction results showed that by 2039, woodland, grassland, wetland
and open water will decrease while there will be major increases in built-up and commercial farming
from 11.61% to 27.91% and 0.18% to 0.34% respectively. Subsistence farming will continue to be the dom-
inant land use by 2039 attributed to gains from woodland (4.7%), grassland (3.7%) and wetland (4.9%).
These LULC changes indicate an intensifying land use pressure in Mpologoma catchment and provide
useful information for land use planners, environmentalists and policymakers in this catchment to con-
sider when planning for sustainable management of the watershed.
� 2021 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.
V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Land use/cover (LULC) change has continued to be a major envi-
ronmental concern at global and local scales mainly due to its gross
impact on ecological sustainability (Vitousek et al., 2008; Yirsaw
et al., 2017). These LULC changes largely stem from an intricate
interaction of various underlying socio-economic factors including
technological capacity, urbanization and the increasing demand to
provide food, fiber and shelter for the growing human population
(MEA, 2005; Verburg et al., 2004; Vitousek et al., 2008). The afore-
mentioned factors have accelerated LULC conversion in various
landscapes thereby compromising the ecological capacity of the
concerned ecosystems to provide their ecosystem services (ESs)
(Defries et al., 2009; Foley et al., 2005). For instance, LULC conver-
sion into construction and agricultural land has affected climate
regulation (Portela and Rademacher, 2001), water availability and
soil fertility (Temesgen et al., 2013) leaving catastrophic impacts
on human wellbeing (MEA, 2005). In addition, about one million
aquatic and terrestrial species are currently threatened with
extinction due to habitat destruction by human activities and the
threat is projected to increase in the near future (IPBES, 2019;
Pimm and Raven, 2000). Therefore, evaluating and documenting
past LULC changes and making predictions of plausible future LULC
dynamics is essential for sustainable land use planning,
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Fig. 1. Location of Mpologoma catchment in Uganda.
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management and monitoring of the concerned landscapes (You
et al., 2017).

Landsat data has been used in land use/cover monitoring for
nearly five decades (since 1972). The medium spatial resolution
of Landsat satellite sensors coupled with a temporal resolution of
16 days have ensured that essential multispectral data are contin-
uously available for tracking LULC changes and trends across mul-
tiple time scales (Carter and Engman, 1984; Hansen and Loveland,
2012). Advances in remote sensing and geographical information
systems (GIS) such as the use of digital image processing algo-
rithms coupled with rigorous validation protocols have increased
the use of Landsat data in studies concerned with detecting, quan-
tifying and monitoring LULC extent and change across multiple
spatial–temporal scales (Hansen and Loveland, 2012). Key areas
of interest in these studies have included marine and freshwater
watersheds (Ballanti et al., 2017; Berihun et al., 2019; Butt et al.,
2015; Elagouz et al., 2020; Matlhodi et al., 2019; Vanderstraete
et al., 2006), urban areas (Dou and Chen, 2017; Kaya and Görgün,
2020; Singh et al., 2015; Somvanshi et al., 2020), drylands (Egeru
et al., 2014; Garedew et al., 2009; Osaliya et al., 2019), rift valleys
(Akinyemi, 2017) and protected areas (Gambo et al., 2018) among
others. The aforesaid and other studies (Defries et al., 2010;
Mohamed et al., 2020) continually highlight that human and natu-
ral factors play a key role in driving LULC change at all spatial and
temporal scales. Hansen et al. (2008) particularly observed that a
small forest portion below one percent (<1%) had been lost in the
Congo Basin between 1990 and 2000 mainly due to settlement,
agriculture and hunting. In another study, Mucova et al. (2018)
detected a reduction in effective Quirimbas National Park area,
Mozambique, between 1979 and 2017 and largely attributed the
change to human settlement and agricultural intensification. Sim-
ilarly, Uganda has experienced tremendous LULC changes in the
past decades. Related studies (Egeru et al., 2014; Kiggundu et al.,
2018; Nakakaawa et al., 2011) have mainly focused on quantifying
these LULC changes in the country to gain an understanding of
their magnitude and past trends. A few studies (Li et al., 2016;
Mwanjalolo et al., 2018) have predicted future LULC changes in
Uganda and none has focused on the increasingly threatened
watersheds in the country (Uganda Bureau of Statistics, 2016).

Land use pressure is continuing to increase globally and due to
the nexus between ecosystems and human livelihood, there will
likely be more adverse LULC changes in the near future. It is, there-
fore, important to understand future LULC patterns and trends in
order to guide responsible natural resource use tendencies in the
present and future times. Predicting future LULC patterns requires
building models based on educated assumptions of future actions
of the driving factors (Munthali et al., 2020; Oyana et al., 2014;
Verburg et al., 2004). Importantly, LULC modeling does not only
provide checks into current land use policies, it also helps natural
resource planners and managers to mitigate or prevent negative
consequences of undesirable future LULC changes (Dezhkam
et al., 2017; Omar et al., 2014; Theobald and Hobbs, 2002). The
aim of LULC modeling, therefore, is to ensure that a continuous
supply of natural resources is available for the current and future
generations (Verburg et al., 2004). A variety of models have been
used in diverse LULC predictions across the world including
agent-based, Markov and cellular automata models (Li et al.,
2016; Mwanjalolo et al., 2018; Sohl and Claggett, 2013). However,
integrated models such as the cellular automata (CA)-Markov
model have been found to give a better output when predicting
long-term spatial and temporal LULC variations (Liping et al.,
2018; Munthali et al., 2020; Singh et al., 2015; Yang et al., 2012).
The CA-Markov model is robust and can be used in different land
use planning scenarios (Fitawok et al., 2020; Fu et al., 2018;
Kamusoko et al., 2009). The model gives accurate and consistent
results (Arsanjani et al., 2012; Wang and Zhang, 2001).
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In this study, CA-Markov modeling was executed using the Land
Change Modeler (LCM) of TerrSet Geospatial Monitoring and
Modeling system (Eastman, 2016). LCM’s multi-layer perceptron
(MLP) neural network technique is robust for modeling complex
nonlinear relationships among variables and running multiple
transitions (Eastman, 2009, 2016). Furthermore, because it is auto-
matic, MLP monitors the LULC changing process from the start to
the end thus giving an accurate prediction (Eastman, 2016). More-
over, LCM maximizes modeling accuracy by masking out any tran-
sition potentials that do not match the specific from transition case
(Eastman, 2016). Thus, the LCM of TerrSet was chosen for this
study due to its efficient analysis and accurate prediction of future
LULC scenarios. Precisely, the study intended to (i) analyze LULC
changes in Mpologoma catchment from 1986 to 2019 and (ii) pre-
dict LULC patterns for the years 2029 and 2039. Since the predic-
tion is in connection with Uganda’s Vision 2040 and SDGs 6 & 15
that call for protection and restoration of fragile ecosystems, this
study is timely in exploiting remote sensing and GIS techniques
to influence strategic land use planning and policy making geared
towards taking immediate action on adverse human activities in
Uganda’s fragile ecosystems. In particular, the use of the Land
Change Modeler to give accurate future LULC change scenarios is
of utmost importance to future management of Mpologoma catch-
ment and similarly affected catchments in the country.
2. Materials and methods

2.1. Study area

Mpologoma catchment (Fig. 1) is an approximately 12,195 Km2

watershed found in eastern Uganda within the Kyoga water man-
agement zone (DWRM, 2017). Mpologoma River, from which the
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catchment is named, literally originates from Mt. Elgon (4,320 m
asl), flows along the common Uganda-Kenya border, meanders
severally and empties into Lake Kyoga 6.1x108 m3 of water per
annum (Muli, 2011). The catchment is a major drinking water
reservoir for residents of eastern Uganda (NEMA, 2006). The cli-
mate has a bimodal rainfall pattern (March - May and August –
November). On average, the area receives 1215–1238 mm of rain-
fall per annum while temperature ranges between 24 �C and 36 �C
(Chombo et al., 2018). The people in this catchment are mainly
subsistence farmers who grow crops on sandy-loams. However,
encroachment on the region’s natural resources has increased.
Wetlands continue to be drained for farming leading to disappear-
ance of several reptile and bird species (Tajuba, 2017). Fruit and
hardwood trees especially Mvule, Milicia excelsa (Welw.) C.C. Berg.
are increasingly felled for timber and charcoal. The rainfall pattern
has also become unpredictable (Uganda Bureau of Statistics, 2016).

2.2. Data collection

This study used both ancillary and satellite data. Ancillary data
included aerial images and ground truth data (reference data
points collected using Geographical Positioning System (GPS).
GPS data points were collected from July to November 2019 for
2019 image classification and assessment of overall classification
accuracy. The satellite data consisted of multispectral data
acquired by Landsat 4–5 TM (Thematic Mapper), Landsat 7 ETM+
(Enhanced Thematic Mapper Plus) and Landsat 8 OLI/TIRS (Opera-
tional Land Imager/Thermal InfraRed Sensor). The satellite images
were preliminarily screened and only those with a maximum cloud
cover of 10% were selected and downloaded from the US Geological
Survey Global Visualization Viewer (USGS Glovis) portal to a local
workstation and analyzed. Table 1 summarizes the image details
and the procedure followed in this study is shown in Fig. 2.

2.3. Image processing and classification

All the Landsat images used in this study were L1T (Level 1
Terrain-corrected data), implying they were already geometrically
corrected (Hansen and Loveland, 2012; Zhu, 2017; Zhu and
Woodcock, 2014). Nonetheless, to remove atmospheric influence
that would encumber image analysis, images were atmospheri-
cally corrected Top of Atmosphere (TOA) and visualization
enhanced using majority filtering method. The images were regis-
tered for WGS 84/ UTM zone 36 N, processed by RGB color compo-
sition, mosaicked and the study area clipped. Images were
classified in ArcGIS 10.7 using the maximum likelihood algorithm
of supervised classification where training samples were selected
Table 1
Landsat image characteristics for this study.

Image recording time Sensor Path/Row

18/10/1986 Landsat 5 TM 170/059
18/10/1986 Landsat 5 TM 170/060
28/12/1986 Landsat 5 TM 171/059
27/02/1989 Landsat 4 TM 171/060
02/04/1995 Landsat 5 TM 170/059
02/04/1995 Landsat 5 TM 170/060
19/01/1995 Landsat 5 TM 171/059
19/01/1995 Landsat 5 TM 171/060
02/01/2006 Landsat 7 ETM+ 170/059
03/02/2006 Landsat 7 ETM+ 170/060
10/02/2006 Landsat 7 ETM+ 171/059
10/02/2006 Landsat 7 ETM+ 171/060
30/01/2019 Landsat 8 OLI/TIRS 170/059
19/03/2019 Landsat 8 OLI/TIRS 170/060
05/01/2019 Landsat 8 OLI/TIRS 171/059
05/01/2019 Landsat 8 OLI/TIRS 171/060
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by delimiting polygons around representative class pixels. The
delineated predetermined classes were subsistence farming,
built-up, commercial farming, woodland, rice scheme, grassland,
wetland, and open water (Table 2). Visual analysis and local knowl-
edge tremendously improved supervised classification results.
2.4. Accuracy assessment

Accuracy assessment is important for verifying the quality of
image output (Butt et al., 2015). A combination of reference
earth-observation data and ground truth data was used for accu-
racy assessment (García et al., 2016). A stratified random sample
of about 220 Google earth reference data pixels proportionally dis-
tributed among the eight LULC classes was routinely used for accu-
racy assessment. A Kappa test was carried out to measure the
extent of classification accuracy; Kappa coefficient, K, being a coef-
ficient of agreement. It reflects the difference between actual
agreement of classification with reference data and the agreement
expected by chance. In this study, Kappa coefficient was calculated
using equation (1) (Congalton, 1991).

K ¼ N
Pr

i¼1xii �
Pr

i¼1 xiþ � xþið Þ
N2 �Pr

i¼1 xiþ � xþið Þ ð1Þ

where,
K = Kappa Coefficient, r = number of rows/columns in the error

matrix, N = total number of samples, xii = sum of correctly classi-
fied samples, xi+ =row i total, while x+i = column i total.
2.5. Land use/cover change detection

The post-classification comparison (PCC) technique for change
detection was performed in ArcGIS 10.7 (Manandhar et al., 2009).
PCC method allows consecutive and independently classified
images to be compared through overlay to detect which LULC type
at the initial date actually changed to another class at the final date
(Gatrell and Jensen, 2008; Kiggundu et al., 2018). The rows of the
transition matrix produced (Table 4) represent LULC categories at
time 1 (t1), 1986, while columns display LULC categories at time
2 (t2), 2019. Row vectors show how LULC type changed between
the times (t1-t2) while column vectors show the land use type at
time t1 from which another land use type developed at time t2.
The main diagonal data in bold highlight areas of LULC persistence.
Changes for each of the 8 LULC types were calculated from 8x8
transition matrices.
Spatial resolution (m) RGB band composition
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30 3,2,1
30 3,2,1
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30 4,3,2
30 4,3,2
30 4,3,2



Fig. 2. Flow chart for LULC Change Detection and Prediction in this study.

Table 2
Delineated LULC classes.

Class name Description

Subsistence
farming

Smallholder rice paddies and crop fields in drained
areas.

Commercial
farming

Kibimba largescale commercial. Plots 45.84 ha
�103.4 ha.

Woodland Protected forests, woodlots (trees � 8 m tall).
Grassland Shrubs (�2 m tall) and grasses, thicket, bush
Built-up Constructed areas
Wetland Vegetated areas at river, lakes and stream edges
Open water Rivers, lakes, dam, ponds
Rice Scheme Doho rice scheme (DRS). Plots 0.1–0.4 ha.
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2.6. Annual rate of land use/cover change

Annual rate of LULC change is a measure of the extent of LULC
change in a specific class per annum. It is useful in identifying
threatened LULC. In this study, annual rate of change (r) in differ-
ent LULC class areas (A2, A1) at specific times (t2, t1) was computed
using the following standard equation introduced by (Puyravaud,
2003),

r ¼ 1
t2 � t1ð Þ xln

A2

A1

� �
ð2Þ

This formula is suitable when comparing LULC changes that are
insensitive to differing time lengths between study dates as in this
study.
2.7. Predicting future LULC dynamics in Mpologoma catchment

A hybrid cellular automata and Markov (CA-Markov) model
(Clarke and Gaydos, 1998; Guan et al., 2011) was used to predict
future LULC scenarios of Mpologoma catchment for the years
2029 and 2039 using the Land Change Modeler in TerrSet Geospa-
tial Monitoring and Modeling system (Eastman, 2016). The predic-
tion was based on the business-as-usual (BAU) assumption. It was
assumed that future LULC trends will continue to occur in ways
similar to the historical and recent LULC trends driven by same
influencing factors (Samie et al., 2017). This meant that the com-
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munities in the catchment would keep on carrying out their rou-
tine socio-economic activities under the prevailing political
situation and government policies and priorities. The driving fac-
tors, thus, included slope obtained from the digital elevation model
(DEM) downloaded from the USGS Earth Explorer website, popula-
tion density data by sub-county from the recent national census
(Uganda Bureau of Statistics, 2016), and national roads layer from
Uganda National Roads Authority. All the input datasets including
drivers and LULC maps were prepared in ArcGIS 10.7 and then
imported into TerrSet Geospatial Monitoring and Modeling System
for transformation and modelling. The multi-layer perceptron
(MLP) neural network classifier in TerrSet’s Land Change Modeler
(LCM), which consists of a set of three units, that is, the input layer,
hidden layer of computation nodes and output layer was then used
to model the transitions (Eastman, 2009). MLP units are interlinked
by a network of connections which work as weights (Mwanjalolo
et al., 2018). For each transition from one LULC to another, a map
of change potential was produced as a transition submodel. Multi-
ple transitions are possible under the same underlying driver vari-
ables and depend on the vulnerability of the LULC to change to
other land uses in which case the submodels are aggregated into
one composite change potential (or transition suitability) map for
that land use (Eastman, 2016). Markov module was used to simu-
late the LULC of 2019 using the land cover image of 2006 as a ref-
erence and transition probabilities matrix. To spatially allocate the
Markov transitions, the multi-objective land allocation (MOLA) and
cellular automata built in the LCM were used. Markov model vali-
dation was achieved by comparing simulated LULC map of 2019
with the actual LULC map of 2019 basing on the Kappa variations
(Singh et al., 2015). Kappa variations were generated from VALI-
DATE module. The validated LULC map of 2019 was then used as
a basis to predict LULC changes for 2029 and 2039 under the CA-
Markov prediction module in the LCM of TerrSet using Markovian
transition areas, transition suitability images and a standard 5x5
cellular automata filter.
3. Results and discussion

The LULC map of Mpologoma catchment of the four years is
shown in Fig. 3. Overall classification accuracies and kappa
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statistics for 1986, 1995, 2006 and 2019 were 85.0%, 86.7%, 90.4%,
91.0% and 0.824, 0.844, 0.888, 0.906 respectively. Initially, the
catchment predominantly comprised grassland, wetland, subsis-
tence farmland and woodland (Table 3, Fig. 4). However, several
changes occurred in the 1986 LULC composition; grassland experi-
encing the greatest net losses followed by wetland and woodland
(Fig. 5). Grassland, woodland and wetland were lost per annum
at rates of 5.52%, 2.47% and 0.63% (Table 3) accounting for respec-
tive total areal losses of 3279.03 km2, 948.8 km2, and 601.94 km2.
Net gains were observed in subsistence farming (3552.38 km2), lar-
gescale commercial farming (15.83 km2) and built-up
(1234.24 km2) at annual rates of 2.41%, 3.77% and 6.22% respec-
tively. Thus, by 2019, Mpologoma catchment typically comprised
expanded subsistence farming, wetland and built-up at 53.16%,
21.49% and 11.61% respectively (Fig. 4). These changes are largely
attributed to the return to a more politically stable climate in
Uganda that provided a peaceful environment for the communities
to engage in several economic activities including agriculture.
Political instability diminishes the productive and transactional
capacities of the economy and increases social unrests, thus creates
a fragile sociopolitical environment (Aisen and Veiga, 2013;
Dalyop, 2018). Therefore, the normalcy created by political stabil-
ity opened up avenues for the affected communities to resume
their activities as had been the case prior to the insurgence that
ravaged the region and country at large. Consequently, population
increased and this could have largely impacted on the land use and
land cover situation of the catchment. As revealed in the most
recent national census (Uganda Bureau of Statistics, 2016) during
the 33-year period considered in this study, Uganda’s population
nearly quadrupled from about 9 million people in 1970s to just
above 34 million people in 2014 largely attributed to the enabling
environment created by a politically stable climate in the country.
The census report particularly shows that eastern Uganda experi-
Fig. 3. LULC maps of Mpologoma catchment ov
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enced an average annual population growth rate and a population
density of 3.55% and 567 persons per square kilometer respectively
which are higher than the national averages. The high population
growth rates and density, therefore, could have accelerated the
rate of conversion of grassland, woodland and wetland ecosystems
in the catchment into farmlands (Table 4) to produce food for the
families and the expanding urban markets.

Results from the cross-tabulation matrices (Table 4) showed
that grassland experienced highest conversion (92.77%) to subsis-
tence farming (75%) and built-up (15.7%). Most woodland
(61.86%) was converted to subsistence farming (34.7%), grassland
(14.3%) and built-up (12.7%) while wetlands (483.24 km2) were
converted mainly to subsistence farming. Large-scale commercial
farmland gained 15.36 km2 from neighboring wetland and small
proportions of subsistence farmland (0.17 km2) to expand produc-
tion. To predict the future LULC changes in the study area, CA-
Markov model was used. The model was validated using simulated
and actual LULC map of 2019. The results are shown in Fig. 6 and
Table 5. Commercial farming, wetland and open water prediction
showed a strong agreement between simulated and actual LULC
image of 2019 (Table 5) despite some overestimations in wetland
and commercial farming by 1.63% and 1.35% respectively and
underestimation in open water by 2.29%. Weak agreements were
shown in overestimating built-up (55.46%) and woodland
(17.38%) and underestimating grassland by 16.78%. Overall, how-
ever, agreement between actual and simulated LULC maps of
2019 was high at 92.3% while error of simulation was 0.078 result-
ing from allocation and quantity disagreements of 0.033 and 0.045
respectively (Table 6). Other researchers have also reported vary-
ing values for the quantity and allocation disagreement. Munthali
et al. (2020), for example obtained 0.01 and 0.02 for quantity and
allocation disagreement while Hyandye and Martz (2017) obtained
2.24% and 6.33% respectively for the same errors. Quantity and
er the thirty-year period of investigation.



Table 3
LULC composition and change trend of Mpologoma catchment (1986–2019). Area in Km2 and percentage (%). Change and annual change rate in percentage (%).

LULC type 1986 1995 2006 2019 Change detected (km2) Rate of change per annum (%)

km2 % km2 % km2 % km2 % 1986–
1995

1995–
2006

2006–
2019

1986–
2019

1986–
1995

1995–
2006

2006–
2019

1986–
2019

Woodland 1703.77 13.97 1623.99 13.32 1538.70 12.62 754.97 6.19 9.78 �85.29 �783.73 �948.80 �0.48 �0.54 �5.48 �2.47
Grassland 3912.64 32.08 3279.93 26.90 1831.56 15.02 633.61 5.20 �632.71 �1448.37 �1197.95 �3279.03 �1.76 �5.83 �8.17 �5.52
Built-up 181.72 1.49 471.57 3.87 951.40 7.80 1415.96 11.61 289.85 479.83 464.56 1234.2 9.54 7.02 3.06 6.22
Subsistence

farming
2931.24 24.04 3583.95 29.39 4789.39 39.27 6483.62 53.16 652.71 1205.44 1694.23 3552.38 2.01 2.90 2.33 2.41

Wetland 3222.26 26.42 2975.56 24.40 2815.39 23.09 2620.32 21.49 �246.70 �160.17 �195.07 �601.94 �0.80 �0.55 �0.55 �0.63
Open water 225.03 1.85 228.49 1.87 228.49 1.87 230.10 1.89 3.46 0.00 1.61 5.07 0.15 0.00 0.05 0.07
Commercial

farming
6.42 0.05 7.56 0.06 12.25 0.10 22.25 0.18 1.14 4.69 10.00 15.83 1.63 4.83 4.59 3.77

Rice scheme 12.22 0.10 24.25 0.20 28.12 0.23 34.47 0.28 12.03 3.87 6.35 22.25 6.85 1.48 1.57 3.14
Total 12195.30 100.00 12195.30 100.00 12195.30 100.00 12195.30 100.00

Table 4
Land use/cover transition matrix for 1986 – 2019 (area in Km2).

LULC types Woodland Grassland Built-up Subsistence farming Wetland Open water Commercial farming Rice scheme Total 1986

Woodland 649.89 244.43 216.98 591.66 – – 0.14 0.67 1703.77
Grassland 78.61 282.88 613.94 2933.93 0.03 – 0.16 3.09 3912.64
Built-up 1.64 2.06 47.7 130.31 0.01 – – – 181.72
Subsistence farming 16.26 71.65 499.14 2343.49 0.14 – 0.17 0.39 2931.24
Wetland 8.22 31.51 37.88 483.24 2618.53 7.79 15.36 19.73 3222.26
Open water 0.16 0.44 0.02 0.49 1.61 222.31 – – 225.03
Commercial farming – – – – – – 6.42 – 6.42
Rice scheme 0.19 0.64 0.3 0.5 – – – 10.59 12.22
Total 2019 754.97 633.61 1415.96 6483.62 2620.32 230.1 22.25 34.47 12195.3

Fig. 4. Comparison of the LULC of 1986 and 2019.
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allocation disagreements are absolute measures that are comple-
ments of the overall agreement (Pontius and Millones, 2011). In
this study, the disagreement was more due to quantity than alloca-
tion discrepancy. Quantity disagreement results from a less than
perfect match in the category totals between the actual and simu-
lated 2019 LULC map. The allocation disagreement on the other
hand, occurred because the distribution of spatial categories
between the actual and simulated 2019 LULC map could have been
less than the expected maximum for a perfect match (Pontius and
Millones, 2011; Warrens, 2015). Researchers have asserted that the
use of inadequate drivers, low quality suitability maps and valida-
tion method are key among other factors that could affect the accu-
racy of the LULC simulation (Hyandye and Martz, 2017; Munthali
et al., 2020; Singh et al., 2015). In addition, these disagreements
could also have stemmed from a less than perfect referencing of
the map that was used for simulation. As such, a very accurate
cell-by-cell agreement in terms of quantity and allocation of grid
cells in each category could not be maximumly achieved. However,
this does not mean that the model was imperfect. Results from the
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Kappa (K) accuracy coefficients revealed a reasonable prediction
accuracy. The detailed validation results (Table 6), that is, Kno_infor-

mation, Klocation, KlocationStrata, and KStandard of 91.29%, 95.1%, 95.1% and
89.09% showed a near perfect and thus satisfactory model accu-
racy. The Kappa variations, all above 80%, demonstrated a strong
prediction agreement between simulated and actual LULC map of
2019(Araya and Cabral, 2010; Singh et al., 2015; Viera and
Garrett, 2005). It follows that the model in this study has given a
true image of how the LULC of Mpologoma catchment will be in
the next two decades following its score on the Kappa coefficients.
Nevertheless, for a more perfect model, conflict between the Kappa
coefficients and the quantity and allocation errors should be
infinitesimal. This can be achieved by maximizing cell-to-cell
agreement in quantity and allocation using images with a slightly
coarser resolution (Hyandye and Martz, 2017).

The modelled results have shown that the transition trend will
continue through 2039 (Table 8). Subsistence farming which was
the dominant LULC in 2019 is projected to also dominate in 2029
and 2039 though at comparatively reduced levels of 48.31% and
47.14% respectively (Table 7). The decrease in subsistence farming
will largely be due to reduced land available for crop farming.
Munthali et al. (2020) observed that agriculture in Dedza district,
Malawi, would decrease over the same period due to population
growth. Likewise, Kiggundu et al. (2018) asserted that high popu-
lation growth in Murchison Bay catchment in Uganda had steered
agriculture and other LULC changes in the catchment. However,
population growth per se may not be the only problem. Efficient
allocation of land resources to the competing land uses could be
the major missing link (Metternicht, 2017). In particular, land
use planning such as encouragement of vertical as opposed to hor-
izontal construction is important in watersheds where develop-
ment is in most cases unregulated (Appiah and Asomani-
Boateng, 2020; Behera et al., 2012). Strategic land use planning will
provide with dividends of sustainable utilization of ecosystem ser-
vices, contribution to food security and biodiversity conservation
(Bourgoin et al., 2012). Therefore, although the decline in



Fig. 5. Net change for each land use/cover category during the study period.

Fig. 6. Projected LULC maps of 2019, 2029 and 2039.
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subsistence farmland will likely affect the feeding situation in the
region, it will necessarily demand adoption of resilient smart agri-
cultural technologies that increase food production and safeguard
the environment. Radical strategies including farm redesign, con-
servation agriculture, use of push–pull integrated pest manage-
ment technologies, agroforestry, high-yielding and climate
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resilient varieties will, therefore, be a means to achieving sustain-
able and environmentally healthy yields (Bharucha, 2020; Eyhorn
et al., 2019; Pretty, 2018) A paradigm shift from subsistence to
commercial farming will also bolster food and economic benefits
for the farmers. These adjustments will be crucial in making pro-
gress on SDGs 1 & 2 of zero poverty and zero hunger respectively.



Table 5
Comparison of actual and predicted LULC types in 2019.

LULC type Area (Km2) Extent of agreement*

Actual 2019 Predicted 2019 Change (Km2) Change (%)

Woodland 754.97 886.18 131.21 17.38
Grassland 633.61 527.27 �106.34 �16.78
Built-up 1415.96 2201.25 785.29 55.46
Subsistence farming 6483.62 5633.47 �850.15 �13.11
Wetland 2620.32 2662.92 42.6 1.63
Open water 230.1 224.84 �5.26 �2.29
Commercial farming 22.25 22.55 0.3 1.35
Rice scheme 34.47 36.82 2.35 6.82

* Difference between actual and predicted LULC proportions of each class.

Table 6
Classification agreement/disagreement.

Information of Allocation Information of Quantity

No [n] Medium [m] Perfect [p]

Perfect [P(x)] P(n) = 0.4765 P(m) = 0.9552 P(p) = 1.0000
Perfect Stratum [K(X)] K(n) = 0.4765 K(m) = 0.9552 K(p) = 1.0000
Medium Grid [M(X)] M(n) = 0.4554 M(m) = 0.9226 M(m) = 0.9031
Medium Stratum [H(x)] H(n) = 0.1111 H(m) = 0.2915 H(m) = 0.3008
No [N(X)] N(n) = 0.1111 N(m) = 0.2915 N(n) = 0.3008
Chance Agreement 0.1111
Quantity Agreement 0.1804
Allocation Agreement 0.6312
Allocation Disagreement 0.0325
Quantity Disagreement 0.0448
Kappa no information 0.9129
Kappa location 0.951
Kappa location strata 0.951
Kappa standard 0.8908
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The predicted results further showed that by 2029 and 2039
area under built-up will increase to 22.24% and 27.91% respectively
(Table 7) mainly in previously woodland, subsistence farmland,
and grassland areas (Table 8). This is partly attributed to the com-
mon tradition in eastern Uganda of parents allocating land inheri-
tance to their male children to start marital life generation after
Table 7
LULC changes from 2019 to 2039.

LULC type 2019 Actual 20

Area(km2) Area (%) Ar

Woodland 754.97 6.190664
Grassland 633.61 5.195526
Built-up 1415.96 11.6107 2
Subsistence farming 6483.62 53.1649 5
Wetland 2620.32 21.48631 2
Open water 230.1 1.886792
Commercial farming 22.25 0.182447
Rice scheme 34.47 0.28265
Total 12195.3 100 12

Table 8
Transition matrix for observed 2019 and simulated 2039 LULC maps.

LULC type Woodland Grassland Built-up Subsistence farming

Woodland 328.24 22.17 132.66 270.6
Grassland 7.45 116.67 293.89 214.4
Built-up 1415.96
Subsistence farming 0.15 3.01 1492.03 4979.83
Wetland 5.31 17 69.12 284.11
Open water 0 0.06 0.02 0.05
Commercial farming 0.01 0.01 0.02
Rice scheme 0 0 0.41 0.05
Total 2019 341.15 158.92 3404.1 5749.06
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generation. This cultural land use practice coupled with the high
population growth rates in the region (Uganda Bureau of
Statistics, 2016) risks further fragmentation of the limited land
resource and will cause more catastrophic effects. Concerns have
already emerged about the reducing bird and reptile species in
the catchment (Tajuba, 2017) and will likely escalate in the near
future. Therefore, national initiatives that strengthen family plan-
ning such as limiting the number of children produced per family
and national housing subsidies will be paramount. Prediction
results have also indicated that there will be reduced woodland
and grassland cover by the end of the next two decades. This will
interrupt the hydrological cycle thus exacerbate the climate condi-
tions of this region. Reduced woodland cover will also imply low
timber production for the region’s construction needs, hence
affected communities should start afforestation or prepare to use
other construction alternatives. Similarly, reduced grassland cover
will also have implications for livestock production in this region.
The inadequate pasture will likely intensify land use conflicts
among the people. Cattle farmers should therefore be helped to
start alternative cattle farming practices such as paddocking if they
are to keep in production. Given the multiple socio-economic and
environmental challenges that Mpologoma catchment is likely to
experience in the near future, an integrated multi-stakeholder
land use management approach is recommended to help the
29 Predicted 2039 Predicted

ea(km2) Area (%) Area(km2) Area (%)

542.72 4.450239 341.15 2.7973892
327.41 2.684723 158.92 1.303125
712.09 22.23881 3404.1 27.913212
890.98 48.30533 5749.06 47.141604
424.88 19.88373 2229.39 18.280731
229.5 1.881873 229.52 1.8820365
31.78 0.260592 41.25 0.3382451
35.94 0.294704 41.91 0.343657

195.3 100 12195.3 100

Wetland Open water Commercial farming Rice scheme Total 2039

0.24 0.03 0.23 0.8 754.97
0.67 0 0.12 0.41 633.61

1415.96
6.45 0 0.98 1.17 6483.62
2220.07 1.48 17.71 5.52 2620.32
1.94 228.01 0 0.02 230.1
0 22.21 0 22.25
0.02 33.99 34.47
2229.39 229.52 41.25 41.91 12195.3
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communities in Mpologoma catchment deal with environmental
and livelihood challenges.
4. Conclusion

Knowledge of the historical LULC changes, patterns and future
trends is important in enhancing environmental management in
the concerned landscapes. This study has shown that Mpologoma
catchment underwent multiple spatial–temporal LULC changes
since 1986 dominated by subsistence farming. The study further
predicted two-decade changes using the CA-Markov model in Terr-
Set’s Land Change Modeler (LCM). Prediction results, continued to
stress that subsistence farming and built-up will be major land use
changes in Mpologoma catchment by the end of the next 20 years.
Crop farming, mainly subsistence, is the mainstay of the people in
Mpologoma catchment. Because the land is limited and population
continues to grow higher, there is an increased risk of soil degrada-
tion including increased soil erosion, leaching, loss of soil fertility
and reduced yields. The farmers should, therefore, be trained in soil
conservation approaches including fallowing, use of farmyard
manure, mulching and crop rotation among others. It will also be
equally important to equip these subsistence farmers with skills
of climate-smart agriculture and help them with agricultural
inputs to increase production on their farms while reducing
encroachment pressure on intact ecosystems. Besides, the govern-
ment should motivate subsistence farmers with incentives to
produce-for-market and reduce producing-for-the-stomach-only
orientations. Furthermore, it is imperative to help farmers develop
alternative sources of livelihood to crop farming. Crop farming has
become a risky venture in the region due to prolonged droughts
that often leave farmers without any meaningful harvests. Thus,
ventures into animal husbandry including poultry should be
encouraged to boost the economic power of the communities.

Furthermore, it is equally important to emphasize that since
future LULC conversion will continue to reduce the amount of land
cover (grassland, woodland and wetlands) and replace it with sub-
sistence farming and built up, the communities in this catchment
should prepare for adverse climatic conditions. These adverse con-
ditions will continue to affect community livelihood. Therefore,
local and central governments should put in place and monitor
measures to curtail environmental degradation such as afforesta-
tion and wetland restoration among others. Local authorities
should ensure that every home plants at least ten trees, the seed-
lings of which should be provided to the communities free of
charge. Additionally, infrastructural development in the catch-
ment, especially the growing urban centers, should be well
planned with particular emphasis on retaining some green belts
around urban centers and promoting green cities. It follows that
urban farming will, therefore, also be an opportunity to exploit
due to rapid emergence of urban centers in the catchment coupled
with the associated demand. Implementation of a suit of pro-
environmental policies will, therefore, reduce pressure on natural
ecosystems thereby contributing to environmental sustainability.

The prediction of LULC change using the Land Change Modeler
(LCM) of TerrSet Geospatial Monitoring and Modeling system is
the first one of its kind in Mpologoma catchment. And, since the
validation results (Kappa variations) for the simulated and actual
LULC maps were in strong agreement, this model is recommended
for LULC predictions in other catchments. Policy makers and land
use planners could therefore take advantage of its predictive ability
to shape future LULC policies in Uganda’s catchments with similar
LULC challenges as Mpologoma watershed. However, since this
study used the BAU assumption, more research should be con-
ducted on this catchment and similar ones in the country using
other socioeconomic and environmental policy scenarios such that
683
the best empirical scenario is adopted for sustainable management
of watersheds in the country.
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