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ABSTRACT 

Analysis of variance (ANOVA) is one of the general linear models used to nearly 

unimaginable range of problems in many different disciplines and has been a 

fundamental method used by plant pathologists and other researchers for analysis of 

continuous data, disease incidence and insect pest abundance data. However, disease 

incidence and pest abundance data usually violate the assumptions of ANOVA 

because they are discrete data. Most researchers often transform the data using arcsine 

for disease incidence, square root for pest abundance and other forms of 

transformation although most researchers finally do not check if the transformation 

was effective to correct for the violated assumptions. Hence, the objectives of this 

dissertation is to (1) to determine the performance of ANOVA on continuous data 

(tomato fruit weight) including the validity of statistical inferences, (2) to assess the 

performance of logistic regression and ANOVA on tomato yellow leaf curl disease 

incidence including the validity of statistical inferences, (3) to evaluate the 

performance of Poisson regression and ANOVA on pest abundance including the 

validity of statistical inferences. Tomato fruit weight data was analyzed assuming 

only normal distribution while tomato yellow leaf curl disease incidence data were 

analyzed assuming normal (ANOVA), binomial distribution (logistic regression). 

Whitefly population data were analyzed assuming normal (ANOVA), Poisson, and 

negative binomial error distribution. On the basis of multiple R Square (higher value) 

and small residual standard error close to zero, ANOVA model on tomato fruit weight 

confirmed better goodness of fit to the data. The greater p-value for deviance 

(p=0.1207) and Pearson (0.0896) statistics showed that logistic regression model 

performed better compared to ANOVA on tomato yellow leaf curl disease. Also the 

greater p-value for deviance (0.0077) and Pearson (0.2796) statistics, decreased AIC 



xii 

 

value (475.22 to 300.11) indicated that negative binomial model was most appropriate 

compared to Poisson regression models. It was concluded that GLMs could be 

alternative models for discrete data. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

1.1 Background information 

Currently, the field of plant pathology and its statistical applications continue to 

develop, providing chances for the use of statistics in the biological sciences and new 

demands for statistical attitudes in plant pathology. It is very familiar in plant 

pathology to estimate the relationship between disease responses to a number of 

environmental and other explainable variables (Sanogo and Yang, 2004). Despite the 

fact that common statistical methods such as ANOVA which fall under parametric 

tests being very well known and convenient, their assumptions are not every time met 

in contexts studied by plant pathologists and other biologists. 

ANOVA, as one of the general linear models, has been applied to an almost 

unimaginable range of problems in many different disciplines. Has been a 

fundamental method used by plant pathologists and other biologists for analysis of 

disease incidence and pest abundance data. However, naturally disease incidence and 

pest abundance data often violates the assumptions of ANOVA of homogeneity of 

variance and normal distribution because they are discrete data (Madden and Hughes, 

1995; Garrett et al., 2004). Statistical inference from pest counts data poses a number 

of challenges. For example in ecological count datasets (Fletcher et al., 2005; Martub 

et al., 2005; Warton, 2005), pest counts frequently unveil two features: skewed 

distribution and large proportion of the values being zero. Also insect pest counts data 

reveal heterogeneity of variances among observational groups or populations (Taylor, 

1961).  
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ANOVA throughout its application, a continuous distribution with a normal 

distribution has been assumed for the response variables (Y), and a linear model is 

fitted to the data to determine the coefficients using an ordinary least square 

methodology which minimizes the sum of squared distances of data points to the 

parameter estimates (Schabenberger and Pierce, 2002). The equations employed are 

known as general linear models. Many dependent variables of interest to plant 

pathologist are discrete data, such as disease incidence (number or proportion or 

percentage of diseased individuals in a total sampled plant population) or count of 

lesions or spores (Madden and Hughes, 1995; McRoberts et al., 2003).  

In the application of analysis of variance (ANOVA), a standard method that has been 

used is the transformation of dependent variable (Y) which effect in approximated 

variable with a normal distribution. However, most researchers do not check if 

transformation was effective to correct the problem of normality and equal variance.  

In a real logic, this is forcing the data to fit a model that was developed for analysis of 

continuous data, rather than using an appropriate statistical method for the data at 

hand (Hughes and Madden, 1995; Madden et al., 2002). Additionally, variance-

stabilizing transformations could not fully stabilize variances in counts data (McArdle 

and Anderson, 2004) or incidence data when some of the means are nearby to 0 or 

100% (Madden, 2002). It is very familiar that departures from the assumption of 

homogeneity may result in inflated error rates (Cochran, 1947). Test of standard 

errors, significance and differences of the means may be affected if ANOVA is used 

for discrete data. 

Despite the transformation of the dependent variable (Y) to meet the assumptions, 

ANOVA through arcsine transformation is still not an effective statistical tool for 

analyzing discrete data such as disease incidence and pest abundance for the 
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following weakness; the equalization of variance in proportional data when using 

arcsine transformation requires the number of trials to be equal for each data point, 

while the effectiveness of arcsine transformation in normalizing proportional data 

depends on sample size (n), and does not perform well at extreme ends of the 

distribution (Worton and Hui, 2010; Hardy, 2002). Another argument against arsine 

transformation is that it does not confine with proportional data between 0 and 1, 

resulting in the extrapolation of proportional values that are not biologically sensible.  

Statistical methods which are unpopular in plant pathology institutional research at 

present, but that have potential for improving analysis of disease incidence and pest 

abundance are generalized linear models (logistic, Poisson regression and negative 

binomial models). These are usually a better alternative where one cannot assume the 

models for continuous data, they are appropriate for discrete data (Collett, 2002). 

Fitting generalized linear models to the data broadly is implemented using maximum 

like-lihood, a method based on finding parameter estimates that result in the highest 

probability of observing the actual data obtained. When generalized linear model is 

used it is straightforward to account for the properties of data from discrete 

distributions such as the binomial and Poisson which are appropriate theoretical 

distributions to consider for proportions and counts respectively (Agresti, 2002; 

Collett, 2002).  In the application of GLMs, one usually chooses the logit-link 

function for proportion data and the log-link function for counts. These link functions 

are used as natural transformation of the data because the residuals will not be 

normally distributed and cannot be constant across values of predictors (Turechek, 

2004). For example in binomial model, dependent variable (Y) has only two possible 

values 0 and 1, present or absent where the residual has only two possible values for 

each predictor (X).With only two possible values, the residual cannot be normally 
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distributed. For proportions, the analysis is commonly known as logistic regression 

while for counts the analysis is commonly known as Poisson regression. The 

approach on these models is useful for designed experiment as well as observation 

(survey) studies where one is relating qualitative factors (e.g. fungicide treatment and 

cultivar) and quantitative factors (e.g. soil temperature) to responses (De Wolf et al., 

2003; Hughes et al., 1998). Furthermore, GLM-based analysis of lesion counts and 

disease incidence from observation (survey) studies can be of direct benefit in 

developing efficient sampling protocols for either estimating mean disease levels or 

testing hypothesis about mean level (Hughes and Gottwald, 1998; Hughes and 

Gottwald, 1999; Madden and Hughes, 1999). 

1.2 Problem statement and justification 

Knowledge on the most appropriate statistical method based on model evaluation and 

goodness of fit test used in analysis of epidemiological data, is a vital aspect in 

drawing valid statistical inferences. These epidemiological studies provide useful 

information for understanding the ecology and biology of the pest. This information 

normally is used by plant pathologists and entomologists as the basis for the planning, 

establishment and monitoring of effective disease and pest management strategies. 

When statistical assumptions are violated and an inappropriate statistical method used 

to analyze data, it systematically over-or under-estimate coefficients, results to larger 

standard error and finally resulting to inaccurate statistical insignificance. In 

epidemiological studies, commonly determined parameters relating diseases with 

biotic and abiotic factors are the analysis of disease incidence and pest abundance. 

Many publications on plant disease measurements (incidence, severity) and vector 

counts have used ANOVA in quantifying diseases. 
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An alternative model to disease incidence data apart from ANOVA therefore is the 

logistic regression, an analytical method that is designed to deal with proportional or 

percentage data (Steel and Torrie, 1997). Logistic regression allows for binomially 

distributed proportional data, unlike arcsine transformation that attempts to stabilize 

variance while the data may remain non-normal (Worton and Hui, 2010). The logit 

link function used in logistic regression provides a more biologically relevant 

analysis, where the proportional data never falls outside of 0 and 1 (Worton and Hui, 

2010).This link also can deal with unbalanced data, whereas the arcsine 

transformation can only effectively equalize variance if proportional data points have 

an equal number of trials (Jaeger, 2008; Worton and Hui, 2010). In addition, logistic 

regression produces easily interpretable and biologically relevant coefficients, unlike 

arcsine transformation (Worton and Hui, 2010). On the other hand, Poisson regression 

model is the basic model for insect abundance or counts data, apart from ANOVA 

(McCullagh and Nelder, 1989).   

For stakeholders (researchers and others) to develop rational and economical control 

measures, whether by use of pesticides or breeding resistant cultivars, it is not 

sufficient to state that disease causes crop losses; the magnitude of disease needs to be 

clearly and precisely quantified using appropriate statistical methods. This study 

compares the use of ANOVA and logistic regression on tomato yellow leaf curl 

disease incidence, ANOVA and Poisson regression on pest abundance data. 
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1.3 OBJECTIVES 

 1.3.1 General objective. 

To provide alternative statistical models for analyzing disease incidence and pest 

abundance data based on model evaluation and goodness of fit test as the criteria for 

testing appropriateness of the data analysis model. 

1.3.2 Specific objectives. 

 To determine the performance of ANOVA on continuous data (tomato fruit weight) 

including the validity of statistical inference; 

 To assess the performance of logistic regression and ANOVA on tomato yellow leaf 

curl disease incidence including the validity of statistical inference; 

 To evaluate the performance of Poisson regression and ANOVA on pest abundance 

including the validity of statistical inference. 

 

                                      

 

 

 

 

 

 

 

 

 



 

7 

 

CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 

2.1 The concept of disease incidence  

Disease incidence refers to the number of plant entities which are visually diseased 

out of the total number of plant units measured (Campbell and Madden, 1990). 

Another definition of disease incidence is the proportion (0 to 1) or percentage (0 to 

100) of diseased entities within a sampling unit (Seem, 1984). The key factor to these 

and other related definition on disease incidence (Chellemi et al., 1988; Kranz, 1988; 

Nutter et al., 1993) is that incidence data are binary. Referring to Seem’s (1984) 

terminology, plant could take only one of the two possible forms either a plant is 

diseased or it is not. 

In plant epidemiological studies, disease incidence can be determined from fruits, 

tillers, leaves, flowers or seeds. Therefore whenever one wants to determine and 

record the disease status of individual observations, disease incidence can be 

calculated. Plant pathologist and entomologist frequently collect disease and pest 

incidence data since in many instances, especially with plant diseases caused by 

viruses, it is impractical to assess disease on the basis of pathogen abundance 

(McRoberts et al., 1996). Similarly with small arthropods such as aphids, thrips, 

mites, psyllidds and leafhoppers, presence or absence is often easier to establish than 

estimating abundance by counting individuals. 

2.2 Distribution of Disease Incidence 

Naturally, disease incidence is not normally distributed (Madden and Hughes, 1995; 

Garrett et al., 2004). Disease incidence is a binary variable because each observed 
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individual plant is either visibly affected or not, or damage symptoms are present or 

absent (Madden, 2002). Therefore it is characterized by a binomial outcome or beta 

binomial (Madden and Hughes, 1995; Collett, 2002). Regardless of many advantages 

of using the binomial distribution (Collett, 2002), this distribution only occasionally 

describes actual disease incidence data. Diseased individual characteristically are 

clustered in nature, resulting in a greater heterogeneity of disease incidence than 

would be expected for a random pattern (Madden, 2002).  More typically the variance 

is larger more skewed than that expected by the binomial distribution (Hughes and 

Madden, 1995). 

Disease incidence assesses the probability (π) of a plant or other plant entity being 

diseased. This probability is clearly a function of the pathogen, host and environment. 

The probability of plant not being diseased is (1- π). This probability comprises the 

two states of the Bernoulli distribution for describing the probability of individual 

observations taking on one of the two classes (e.g. diseased or healthy). 

2.3 Disease Assessment. 

Disease assessment or phytopathometry usually involves the measurement and 

quantification of plant disease. Therefore it is a primary significance in the study and 

analysis of plant disease epidemics (Nutter et al., 2006), also distinguished disease 

assessment and phytopathometry, the former being as the process of quantitatively 

measuring disease intensity and the second as the theory and practice of quantitative 

disease assessment. It is very important to have accurate disease assessment methods 

as identified early by (Chester, 1950; Kranz, 1988) who stated that without 

quantification of disease no studies in epidemiology, no assessment of crop losses and 

plant disease surveys and their applications would be possible. Also the idea was 

advanced by Lucas (1998) that disease assessment includes a number of 
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interconnected activities, such as the future progress of the disease, disease diagnosis, 

forecasting and crop loss. Strange (2003), mentioned that the measurement of plant 

disease and its effects on crop yield, quality and value are vital for control strategies. 

Prior to modeling the change in disease intensity (dy) with change in time (dt), it is 

required first to obtain accurate and precise measurements of disease intensity (Nutter 

et al., 1991). Disease intensity is a general term for the amount of disease (injury) 

present in a host population (Nutter et al., 1991), while the most common types of 

disease intensity measures are prevalence, severity and disease incidence. 

Prevalence is a term that is often used interchangeably with incidence but strictly 

defined as the number of fields within a specific geographical area (Country, state, or 

region) where a disease has been visually observed (symptoms) divided by the 

number of fields sampled and assessed (Campbell and Madden, 1990; Nutter et al., 

1991; Zadoks and Schein, 1976). Normally, getting information concerning pathogen 

prevalence, individual plants or plant parts are sampled from a host population (fields) 

and these are tested for the presence of the disease such as virus using a reliable 

methods of indexing (infectivity, Enzyme-linked immunosorbent assay, Polymerase 

Chain Reaction and presence of inclusion bodies. (Kapa and Waterworth, 1981). 

Therefore, pathogen prevalence may include quantitative information concerning the 

presence of a disease in asymptomatic as well as symptomatic fields. Prevalence data 

are frequently multiplied by 100 to give the percentage of fields in which a disease or 

pathogen is present. Obviously, prevalence data does not give quantitative 

information about the relative amount of disease within the individual fields sampled. 

Within-field disease intensity measurements can be obtained by assessing plant 

population within fields for disease incidence or disease severity. 
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2.4 The inadequate of ANOVA over categorical dependent variables. 

The problem with ANOVA and more commonly general linear models over binary or 

categorical outcome has been known for a long time (Rao, 1960; Winer et al., 1971; 

Cochran, 1940). ANOVA compares the means of different experimental or 

observational sample groups and determine whether to reject the null hypothesis that 

the groups have the same population means given the observed sample variances 

within and between the sample groups based on continuous scale (normal distributed) 

and application of ANOVA to discrete data compromise the results. 

2.5 Concept and rationale of data transformation. 

Data transformation is used by researchers to generate new variables from existing 

variables according to the mathematical functions. It has been used in statistical 

procedures as a vital instrument to serve many purposes including improving 

normality of a distribution, equalizing variance to meet assumptions and improve 

effect sizes, thus constituting important aspects of data cleaning and preparing for 

statistical analyses. Some commonly transformation tools includes: logarithmic, 

square root, arcsine, adding constants and trigonometric (Box and Cox, 1964). 

Researchers have used transformation technique routinely as data cleaning before data 

analysis (Box and Cox, 1964; Sakia, 1992) provides a family of transformations 

which approximately normalize a particular variable, eliminating the need to 

randomly try different transformation to determine the best option. Box and Cox 

(1964) originally envisioned this transformation as a panacea for simultaneously 

correcting normality, linearity and homoscedasticity. These transformations often 

improve all of these aspects of a distribution or analysis, (Sakia, 1992) and others 

have noted that it does not always accomplish these challenging goals. 
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 2.6 Data Transformation tools used for proportion and counts data 

2.6.1 Arcsine transformation 

This transformation has customarily been used for proportions, (which range from 

0.00 to 1.00), and involves taking the arcsine of the square root of a number, with the 

resulting transformed data reported in degree of radians. This transformation is of the 

form 

                                             Y= arcsine (p) = sin
-1 

p,                

where p is the proportion and Y is the output of the transformation. 

Due to the mathematical properties of this transformation, the variable must be 

transformed to the range of -1.00 to 1.00. Despite the fact that it is believed to be 

perfectly valid transformation technique the use of arcsine also known as inverse 

transformation (Rao, 1998) or angular transformation (Snedecor and Cochran, 1989), 

has been open for debate as to the usefulness in analysis of proportional data that 

tends to be skewed when the distribution is not normal. 

Even if arcsine transformation is useful tool in stabilizing variances and normalizing 

proportional data, there are a number of reasons why this method can be problematic. 

The equalization of variance in proportional data when using arcsine transformations 

needs the number of trials to be equal for each data point, while the efficacy of arcsine 

transformation in normalizing proportional data is dependent on sample size (n), and 

does not perform well at extreme ends of the distribution (Worton and Hui, 2010; 

Hardy, 2002). An additional argument against arcsine transformation is that it does 

not confine proportional data between 0 and 1, resulting in the extrapolation of 

proportional values that are not biologically sensible (Hardy, 2002).  
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2.6.2 Square root transformation 

It is useful for count data (data that follow a Poisson distribution) and more 

appropriate for data consisting of small whole numbers. If most of the values in the 

data set are less than 10, especially if zeros are present, the transformation to use is 

(Y+0.5) 
½
 instead of Y

1/2
. In this, the square root of every value is taken. However, as 

one cannot take the square root of a zero number, a constant must be added to move 

the minimum value of the distribution above 0, preferably to 1.00 (Osborne, 2002). It 

reflect the fact that numbers above 0.00 and below 1.0 behave differently than 

numbers 0.00, 1.00 and those larger than 1.00. The square root of 1.00 and 0.00 

remain 1.00 and 0.00 respectively, while numbers above 1.00 always become smaller, 

and numbers between 0.00 and 1.00 become larger (the square root  of 4 is 2, but the 

square root of 0.40 is 0.63). Therefore if square root transformation is used to 

continuous variable that contains values between 0 and 1 as well as above 1, you are 

treating some numbers differently than others which may not be desirable. 

2.7.0 Models, Normality and equal variance test Reviews 

2.7.1 Logistic Regression Model for Binary Data. 

Logistic regression is the statistical model which observes the influence of different 

factors on categorical rather than continuous outcome. The model estimates the 

probability of an event of binary outcome (Menard, 1995). The fundamental 

mathematical concept that underlies logistic regression is the logit-the natural 

logarithm of an odds ratio. It is part of categorical statistical models called generalized 

linear models. This broad class of models includes ordinary regression and ANOVA, 

as well as multivariate statistics such as analysis of covariance and log- linear 

regression (Agresti, 1996). The predicted value of the dependent variable is a 

probability. Logistic regression currently has increased popularity as a modern 
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statistical technique used to model the probability of discrete (i.e. binary or 

multinomial) outcomes. When correctly applied, logistic regression analyses yield 

very powerful insights to the attributes (i.e. variables) which are more or less likely to 

predict event outcome in a population of interest. These models also explain the 

extent to which changes in the values of the attributes may increase or decrease the 

predicted probability of event outcome. Generally in logistic regression the dependent 

or response variable is dichotomous, such as presence/absence or success/failure. 

Logistic regression model has been used as an alternative to ANOVA through arcsine 

transformation that is becoming more prevalent in today’s biological data (Steel and 

Torrie, 1997). When logistic regression model is implemented, the test of significance 

of the model coefficients are performed most commonly with the Wald χ
2
 statistic 

(Menard, 1995) which is based on the change in the likelihood function when an 

independent variable is added to the model. The Wald χ
2
 statistics serves the same 

role as the t or F test of ordinary least square partial regression coefficients. There are 

numerous likelihood function statistics also available to assess goodness of fit (Cox 

and Snell, 1989). The logistic model (Agresti, 1996) has the following form. 

Logit (Y) =In (  ) = α +β1x1…+ ɛ 

where, π is the probability of event, α is the Y intercept, β is regression coefficient and 

X is a predictor. The logit function is the link function for the binomial distribution. βi   

stands for the estimated coefficients and Xi  stands for predictors in the model. 

2.7.2 Poisson Regression model for counts data 

Poisson regression analysis is a tool which allows modeling of dependent variables 

that are counts (Cameron and Trivedi, 1998; Kleinbaum et al., 1998). It is usually 

applied to study the occurrence of small number of counts or events such as whitefly 
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counts as a function of a set of independent variables like cultivar and altitude, in an 

experiment and observational study in many fields, including Biology and Medicine 

(Gardner et al., 1995). This model is based upon the generalized Poisson distribution 

which has been comprehensively studied by researchers. In some disciplines the 

model has been used to model a household fertility data set (Wang and Famoye, 

1997) and to model injury data (Wulu et al., 2002). Counts data with too many zeros 

are frequent in a number of applications. (Ridout et al., 1998) cited examples of data 

with too many zeros from diverse disciplines including agriculture and species 

abundance. Poisson regression models for count data assume an equality of variance 

and mean for each observation. This assumption breaks down if over-dispersion is 

present in the counts data. Therefore we discuss another model which accommodates 

data whose variance larger than the mean. Poisson regression model (Agresti, 1996) 

summarized as 

Loge (µ) = βo+β1x1+β2x2+ βnxn +ɛ 

The variance in Poisson model is equal to the mean        

Var (y) =µ 

The Poisson regression model is modeled as  

E(Y) =µ=exp (βo+β1x1+β2x2+ βnxn …+ɛ) 

2.7.3 Negative binomial Model (NBM) 

Negative binomial distribution is the mixture of Poisson distribution in which the 

expected values of the Poisson distribution differ according to a gamma (type III) 

distribution (Johnson and Kotz, 1969). This support one of the four derivations of the 

negative binomial model (Anscombe, 1949). So far it has revealed that the limiting 

distribution of the NBD as the dispersion parameter (k) approaches zero, is the 

Poisson. Once k is an integer, the NBD turn into the Paschal distribution, and the 
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geometric distribution corresponds to k=1. The log series distribution arises when 

zeros are missing and such as k→∞ (Saha and Paul, 2005). The negative binomial 

statistic (Agresti, 1996) is given as; 

ƒ(y; k, µ) =     (  )k 
  ( 1-  )k

   y= 0,1, 2 

where k and µ are parameters. The variance of negative binomial is as follows; 

Var (y) =µ+ (µ
2
/k) 

where k range from zero to infinity, µ is the mean. 

2.7.4 Shapiro-Wilk test 

Shapiro-Wilk test checks the normal assumption by creating W statistic, which is the 

ratio of the best estimator of the variance (based on the square of a linear combination 

of the order statistics) to the usual corrected sum of squares estimator of the variance, 

where 0 < Wn ≤1 and 7 ≤ n ≤ 2,000. Shapiro-Wilk statistic (Shapiro and Wilk, 1965)  

is given as  

 

Where  x(i) is the i
th

 largest order statistic, x  is the sample mean and n is the number of 

observations. 

The hypotheses used are: 

Ho: Sample data has a normal distribution 

H1: Sample data does not have a normal distribution 

Shapiro -Wilk test conclusion is that; 

• P-value > 0.05 means the sample data is normally distributed. 

• P-value < 0.05 means the sample data is not normally distributed. 
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2.7.5 Anderson-Darling test 

Anderson-Darling Statistic was developed by Anderson and Darling in 1954. It is 

based on empirical distribution function. Its test statistic is called statistic which is the 

square of the difference of histogram width and area width below the normal curve. 

The Anderson-Darling statistic (Anderson and Darling in 1954) is calculate as 

 

The Anderson-Darling hypotheses test: 

Ho: Data is normally distributed. 

H1: Data is not normally distributed. 

Anderson-Darling test interpretation; 

 • P-value > 0.05 means the data is normally distributed. 

• P-value < 0.05 means the data is not normally distributed. 

2.7.6 Skewness test 

The skewness value offers a sign of either departure or no departure from symmetry 

in a given distribution. A data set is symmetric if the median divides the left side and 

the right side into two identical areas. Skewness is measured with the following 

equation (Kenney & Keeping 1962): The Skewness statistics is written as; 

 

where, x  is the mean, N is the number of data points and s is the standard deviation.  

A symmetric distribution which is an indication of normally distributed data has a 

skewness value of zero. Negative values show data that are left skewed and positive 

values show data that are right skewed. 
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2.7.7 Kurtosis test 

Kurtosis is a measure of whether the data are peaked or flat relative to a normal 

distribution. This means that data sets with high kurtosis incline to have a distinct 

peak near the mean, decline rather rapidly and have heavy tails. Data sets with low 

kurtosis incline to have a flat top near the mean, rather than a sharp peak. Kurtosis is 

measured with the following equation (Miles & Shevlin 2001): The Kurtosis statistics 

is written as; 

 

Where  x  is the mean, N is the number of data points and s is the standard deviation.  

The kurtosis for a standard normal distribution has a value of zero. If the distribution 

is perfectly normal, skewness and kurtosis values of zero will be obtained. Positive 

kurtosis shows a leptokurtic distribution. The word ‘leptokurtic’ is derived from the 

Greek word ‘leptos’, meaning small or slender. Negative kurtosis shows a platykurtic 

distribution. The term ‘platykurtic’ is derived from the French word ‘plat’, meaning 

flat (Miles & Shevlin 2001). 

2.7.8 Histogram plot 

Histogram is the most widely used graphical methods, which is the simplest and 

possibly the oldest method which divides the range of data into classes and plot bars 

equivalent to each bin or class. The height of each bar reveals the number of data 

points present in the equivalent bin. The method summarizes the data distribution into 

shape, standard deviation, skewness, kurtosis and presence of the extreme values 

(outliers). For a normal distributed variable the histogram display a mean of 0 and 

standard deviation of two. Also display a symmetric, single-peaked and bell- shaped 

(Armitage and Colton, 1998). 
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2.7.9. Box plot 

Box plot or “box and whiskers” depict an excellent summary of distribution of data 

based on minimum, first quartile (25
th

 percentile), median (50
th

 percentile), third 

quartile (75
th

 percentile) and maximum of the data (Tukey, 1977). If data comes from 

a normally distributed population the 25
th

 percentile and 75
th

 percentile become 

symmetry, median and mean are located at the middle point. If the percentiles are not 

symmetry, it implies the possibility of skewed distribution. 

2.8.0 Normal quantile quantile plot (Q-Q PLOT) 

The normal Q-Q plot is a plot of the expected normal values against the 

corresponding of observed data. It aid to show how distribution of data could be 

normal or deviate from a normal distribution. A normal distributed data show a Q-Q 

plot with actual data points align along the straight line which originate from the right 

angle with a positive slope. 

2.8.1 Levene’s test 

Levene’s test is used to test if samples have equal variance. The equal variance across 

samples is so called homogeneity of variance. Common statistical models such as 

analysis of variance assume that variance is equal across groups or samples. 

Therefore, the Levene’s test is used to verify this assumption prior to the use of 

analysis of variance model (Levenes, 1960). 

2.8.2 Fligner-Killen test 

This test used for testing homogeneity of variance of a sample or population (Fligner 

and Killeen, 1976). It is based on ranking the absolute values and assigning the 

increase scores. It is test among other widely used test for conformity of equal 

variance of groups or samples. 



 

19 

 

2.9.0 Tomato Yellow Leaf Curl Disease 

 Tomato (Lycopersicon esculentum Mill.) is one of the main vegetable crops grown in 

Tanzania. It is highly popular due to its high nutritive value, taste and multipurpose 

use in various food items such as salad as well as processed products like tomato 

sauce, pickle, ketchup, puree, dehydrated and whole peeled tomatoes. It is a good 

source of vitamins (A and C) and minerals (Hobson and Davies, 1971; Kalloo, 1991). 

In Tanzania, tomato is a major fruit vegetable crop that is cultivated by commercial 

and small scale farmers and used for both fresh and processing industries. Despite it is 

importance, it is seriously attacked by a number of diseases caused by fungi, bacteria 

and viruses. Among the viral diseases, whitefly-transmitted germiniviruses (WTGs) 

such as tomato yellow leaf curl diseases are of significant constraint whenever the 

crop is grown as they causes poor fruit yield and quality. The amount of losses due to 

these viruses often reaches 100% (Green and Kalloo, 1994). Losses vary depending 

on virus strain, the variety of the tomato, the age of the plant at infection time, 

temperature during disease development, presence of other diseases, and the extent 

that virus has spread in the plant. 
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CHAPTER THREE 

 

3.0 MATERIALS AND METHODS 

3.1.1 Study area 

The field experiment was conducted in experimental station at Chambezi, Bagamoyo 

in Tanzania located on latitude 6 º 32´5´ longitudes 38º58´ and 34m above sea level. 

3.1.2 Experimental design 

The experimental was laid out as a completely randomized design. Seven tomato 

cultivars CNL3070J, CNL3078G, CNL3125P, CNL3125E, CNL3125L, Tanya and 

Tengeru from Asian Vegetable Research and Development Center in Arusha 

Tanzania were used as treatments in this experiment. The treatments were replicated 

three times in plots each measuring (6m by 1.2m). Plants were spaced within rows at 

0.6m and 0.5m between rows. Each plot had two rows each with six plants which 

gives a total of twelve plants in a plot.  

April 14, 2012 seeds were sowed in trays. They were left until the seedlings have 

three to four full expanded leaves. One week before transplanting manure was applied 

one the plots. Fifteen days old seedlings were transplanted in the field in May 2012. 

3.1.3 Data collection 

Two harvests were considered, first fruit harvest was on August 10, 2012 and the 

second harvest was on August 31, 2012. However, only marketable fruits weight was 

measured. Since each plot consisted of twelve plants, only six plants three from each 

row within a plot were considered for fruit weight measurements. All the seven 

cultivars were harvested and finally total fruit weights per cultivar in each of the three 

replications were measured using beam balance. 
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3.2 Field Survey 

A field survey was carried out to obtain tomato yellow leaf curl disease incidence and 

whitefly abundance data to address second and third objectives. 

3.2.1 Tomato Yellow Leaf Curl Disease 

A survey on tomato yellow leaf curl disease was conducted in June, 2012 in Arusha as 

one of the major tomato growing areas in Tanzania. The districts surveyed included 

Arumeru East, Arumeru West and part of Arusha Township. Fields with a 2 to 4 

month-old tomato crop were sampled on transect along rural roads at approximately 3 

to 4km interval. An X-shaped transects stretching between opposing corners of each 

field was used. A total of 40 tomato plants were visually assessed in each field where 

the symptomatically plants were recorded as positive (+) and finally counted to get a 

total number of infected plants among the 40 assessed plants to determine the TYLCD 

incidence. Disease incidence was calculated as follows. 

Disease incidence = ( ) x100% 

where n is the number of plants affected by disease and N is the total number of plants 

assessed. 

3.2.3 Whitefly counts 

Adult whitefly population was determined by counting the number of whiteflies on 

the five top most expanded leaves of a representative shoot on the 40 tomato plants 

randomly selected along diagonals of each field (Sseruwagi et al., 2004). This was 

used to determine the whitefly populations/counts.  

3.4 Statistical analysis of the data 

For the tomato fruit weight data the test for normality and homogeneity of variance 

were carried out through statistical tests; Shapiro-Wilk statistics, Anderson-darling 



 

22 

 

test, kurtosis, skewness and graphic methods using histogram, box plot, q-q plots. The 

same tests were also performed on tomato yellow leaf curl disease and whitefly 

counts before and after data transformation. The assumption of equality of variance 

on data was tested using statistical test; Levene’s test and fligner test. 

For analysis of tomato fruit weight data, only ANOVA was fitted to the data with the 

assumption that fruit weight as a continuous data has homogeneous variance and 

approximate log-normal distribution (Perry et al., 2003). Upon statistical test 

ANOVA showed to meet the assumptions (Table 1). ANOVA as one of the general 

linear model applied ordinary least square method. Hence, ANOVA was an 

appropriate statistical tool to analyze tomato fruit weight data.). Model evaluation 

performed using coefficient of determination (R
2
) and residual standard errors. LSD 

was used to compare variety means after the ANOVA null hypothesis of equal means 

was rejected using the ANOVA F-test. 

For Analysis of disease incidence data, the general linear model (ANOVA) and 

binomial model were fitted to the same data. Since the assumption of normal 

distribution in disease incidence data was not met, now the data is taken care of by 

assuming a binomial distribution for the data, and by using maximum likelihood 

methods to estimate the p-value and the parameters of the model. The general 

linear/normal distribution model applied ordinary least squares (OLS) on arcsine 

transformed TYLCD incidence. In this study arcsine transformation was used due to 

its popularity among many plant pathologists, breeders and other researchers. The 

probabilistic model using OLS assumes that the underlying errors of the transformed 

data are uncorrelated with homogeneous variance, and hence follow an approximate 

log-normal distribution (McArdle and Anderson, 2004; Warton, 2005). Binomial 
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distribution model (logistic regression) applied maximum-likelihood method with a 

natural logit transformation.  

 Logistic regression analysis was used to examine the effects of two treatments 

cultivar and altitude on tomato yellow leaf curl disease incidence. The probability of 

success (TYLCD infection) was modeled as a function of both cultivars and altitude. 

The regression coefficients were interpreted as the rate of change in the odds ratio of 

TYLCD per unit change in the altitude .In this logistic regression model, the 

proportion of success (infected plants), p, was modeled and logit transformation 

assumed to be a linear combination function of the cultivars and altitude.  

logit(Y) =In (   ) =α +β1x1…+ɛ 

where, logit is the Link function for the binomial distribution and used as a natural 

transformation for categorical data. For TYLCD incidence, β0 represents intercept, β1, 

β2 are the maximum likelihood estimates of the logistic regression coefficients and the 

X1, X2 stands for cultivar and altitude respectively, The TYLCD incidence was 

analyzed by assuming binomial distribution of diseased individual.  

The effect of cultivar and altitude on the number of whitefly counts was tested using a 

linear model, (ANOVA), Poisson regression and negative binomial model. The 

general linear/normal distribution model applied ordinary least squares (OLS) on 

square root transformed whitefly counts. The probabilistic model assumed the 

underlying errors of the transformed whitefly counts data are all uncorrelated with 

homogeneous variance, and an approximate log-normal distribution (Perry et al., 

2003). 

 Poisson distribution was considered as it arises under the assumption that insect pest 

are distributed randomly in space and the variance equals to the mean. However, 
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insect pest count data usually exhibit over dispersion, with a variance larger than the 

mean (Taylor, 1961). A Poisson regression model relating the whitefly population 

mean (µ) to the explanatory variables cultivars and altitude took a form of  

loge (µ) = α +β1x1 +… +ɛ 

where b0 is an intercept and bi is a parameter coefficients to be estimated for the i
th

 

covariate and Xi stands for cultivar and altitude  

When Poisson regression model which applied Maximum-likelihood approach using 

log link as a link function revealed over dispersion, negative binomial model was 

considered because one significant characteristic of the NBD is that it naturally 

accounts for over dispersion because its variance is often greater that the variance of a 

Poisson distribution with the same mean. The NBD can be derived from the Poisson 

distribution when the mean parameter is not identical for all members of the 

population, but itself is distributed with gamma distribution.  

The Goodness-of –fit was based on Pearson and deviance statistics while model 

selection was based on Akaike Information Criteria (AIC). All these analyses were 

performed in R version 2.15.0. 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

This chapter displays the statistical and graphic methods used for normality and equal 

variance test of all data in this study, data analysis, interpretation and finally 

discussion of the findings from this study in association with the other existing 

literatures. 

Table 4.1: Normality and equal variances test on tomato fruit weight data 

Statistical test p-value Calculated value 

Shapiro-Wilk  test 0.6501  

Anderson-Darling  test 0.7767  

Skewness   -0.2321 

Kurtosis   -1.1201 

EQUAL VARIANCE O TEST 

Levene’s test 0.7803  

Fligner test 0.6155  

 

From (Table 4.1) above, Shapiro-Wilk test (p=0.6501) as well as Anderson-Darling 

test (p=0.7767) did not reject the null hypothesis that the fruit weight variable was 

normally distributed. The skewness (-0.2321) and kurtosis (-1.1201) also indicated an 
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almost normal distribution. Levene’s test (0.7803) as well as Fligner test (0.6155) also 

did not reject the nully hypothesis that the fruit weight variable had equal variance. 

Therefore, we concluded that fruit weight variable was normally distributed and had 

equal variance.  
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Figure 4.1: Graphic methods for normality test of tomato fruit weight 

 

From (Fig 4.1) the histogram plot above, box plot with a median line divided the two 

quartiles equally (symmetry) and normal probability plots (q-q) with an almost 

Histogram of tomato fruit yied. 
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straight line from the right angle all indicated that the tomato fruit weight variable was 

normally distributed. Therefore, there was no evidence that the raw tomato fruit 

weight deviated from the normal distribution and equal variances. 

 

 

Table 4.2:  Normality and equal variance test of Tomato Yellow Leaf Curl 

disease incidence before and after transformation of the data using arcsine 

function 

 TYLCD incidence 

before transformation 

TYLCD incidence  

after transformation 

Statistical test p-value   Calc value p-value Calc value 

Shapiro-Wilk  test 9.118e-10  1.86e-09  

Anderson-Darling  test 2.2e-16  2.2e-16  

Skewness    2.5097      0.9010 

Kurtosis   7.2055     -1.1858 

 EQUAL VARIANCE  TEST   

Levene’s test 0.9319  0.8992  

Fligner test 0.7113  0.7495   

 

Shapiro-Wilk test (p=9.118e-10), Anderson-Darling test (p=2.2e-16), Skewness 

(2.5097) and Kurtosis (7.2055) in raw data as well as arcsine transformed data where 

Shapiro-Wilk test (p=1.86e-09) and Anderson-Darling test (p=2.2e-16) all rejected the 

null hypothesis that the raw and arcsine transformed incidence data were normally 

distributed. Therefore, from this (Table 4.2) we concluded that arcsine transformation 

did not ensure normality, hence the data remained non- normal.  
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Figure 4.2: Normality test on tomato yellow leaf curl disease incidence data 

before arcsine transformation. 

 

From the diagnostic plots (Fig 4.2), the histogram plot, box plot and normal 

probability plots (q-q) all indicated that the raw tomato yellow leaf curl disease 

incidence was not normally distributed. Most observations are highly concentrated on 

the left side of the distribution (a) while in box plot the data is right skewed(c). The 

observations in (b) produced s-shape which is the deviation from the line of fit. 

(a) 

(b) 

(c) 

Box plot 
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Therefore, based on the statistical and graphic methods above, it was concluded that 

raw tomato yellow leaf curl disease incidence was neither normally distributed nor 

equal variance. 

Histogram of ARCSINETYLCDincidence
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Figure 4.3: Normality test on tomato yellow leaf curl disease incidence data after 

arcsine transformation. 

 

 

In (Fig 4.3) histogram plot, box plot, and normal probability plots (q-q) all showed 

that the arcsine transformed tomato yellow leaf curl disease incidence was not 

normally distributed. Therefore, based on the statistical test (Table 4.2) and graphic 

methods (Fig 4.3) all proved that arcsine transformation did not ensure normality. So 

(b) 

(a) (c)

) 

Box plot 
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it was concluded that raw and arcsine transformed tomato yellow leaf curl disease 

incidence was not normally distributed. 

Table 4.3: Normality and equal variance test of whitefly population before and 

after transformation using square root function 

 

 

From (Table 4.3) above, Shapiro-Wilk test (p=5.71e-07), Anderson-Darling test 

(p=5.47e-07), Skewness (2.177926) and Kurtosis (5.614029) in raw whitefly counts 

data as well as square root transformed whitefly counts data where Shapiro-Wilk test 

(p=0.0066)  and Anderson-Darling test (p=0.0339) all rejected the null hypothesis that 

the raw whitefly counts  and square root  transformed  data were normally distributed. 

Therefore it was concluded that square root transformation did not ensure normality in 

whitefly counts.  

 

                                   Whitefly counts                       Whitefly counts                                       

                                   before transformation              after transformation    

                                                                                                                                                                            

Statistical test p-value Calc value p-value Calc value 

Shapiro-Wilk  test 5.71e-07  0.0066  

Anderson-Darling test 5.47e-07  0.0339  

Skewness   2.177926   0.7056 

Kurtosis   5.614029   0.1459 

 EQUAL VARIANCE O TEST   

Levene’s test 0.4386   0.5064  

Fligner test 0.1933   0.3818   
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Figure 4.4: Normality test of whitefly abundance before transformation using 

square root function. 

 

 

The histogram plot, box plot, and normal probability plots (q-q) all indicated that the 

raw whitefly counts data was not normally distributed (Fig 4.4). Most observations 

are highly concentrated on the left side of the distribution (a) and right skewed in box 

plot (c). The observations in (b) produced s-shape which is the deviation from the line 

of fit. Therefore, based on the statistical test (Table 4.3) and graphic methods (Fig 4.4) 

above, was concluded that raw whitefly counts data was not normally distributed. 

(a) 

(b) 

(c) 

Box plot 
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Histogram of SqrtWhtfly.abd
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Figure 4.5: Normality test of whitefly abundance after transformation using 

square root function 

 

 

In (Fig 4.5) the histogram plot, box plot, and normal probability plots (q-q) all 

indicated that the square root transformed whitefly counts data was not normally 

distributed. Most observations are highly concentrated on the left side of the 

distribution (a) while in the box plot data is left skewed(c). The observations in (b) 

produced s-shape which is the deviation from the line of fit. Therefore, based on the 

statistical test (Table 4.3) and graphic methods (Fig 4.5) above it was concluded that 

raw and square root transformed  whitefly counts data was not normally distributed. 
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Box plot 
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    Table 4.4: Estimated p-values of Analysis of variance on tomato fruit weight 

PREDICTOR p-value Calculated value 

Cultivar 0.03789 *  

Goodness of fit test   

Multiple R-squared:         0.5708 

Residual standard error:         0.622 

 

Analysis of variance (ANOVA) was performed to tomato fruit weight data as 

indicated in (Table 4.4).There was a significant different of cultivar (p=0.0379). The 

goodness of fit test multiple R squared (57%) being larger and residual standard error 

(0.622) being small closer to zero indicated that AVONA was an appropriate model to 

analyze this data.  
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  Table 4.5: Means in (kg) for the tomato fruit weight 

Treatments                Means 

TANYA                           5.83a 

CNL3078G-01009                           5.39ab 

CNL3070J-010010                           5.35abc 

CNL3125P-01005                          4.95abcd 

CNL3125L-01003                          4.44bcd 

TENGERU                          4.28cd 

CNL3125E-01002                          4.19d 

LSD                          1.09 

Means with the same letter are not significantly different. 

 

Table 5 above provides the post hoc analysis of the cultivar where Tanya had the 

highest fruit weight yield compared to the rest tomato cultivar. 
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Table 4.6: Estimated the p-values of Analysis of variance before and after 

Arcsine Transformation of TYLCD incidence. 

 Predictors       p-value before Transformation    p-value arcsine- Transformation   

Cultivars                        0.00197 **                                       0.1447 

Altitude                          0.0777                                             0.0957 

GOODNESS OF FIT TEST 

Adjusted R-squared        0.4723                                              0.1906 

Residual standard error   2.576                                                0.0984 

 

In Table 4.6 analysis of variance (ANOVA) was performed to reveal the effect of 

cultivar and altitude in two forms of data. In raw (untransformed) data cultivar  

indicated statistical significant different (p=0.002) on the influence of tomato yellow 

leaf curl disease incidence as main effect while it showed that there was no significant 

difference (p=0.096) on arcsine transformed tomato yellow leaf curl disease incidence 

data. On the other hand, altitude had no significant effect (p=0.078) on untransformed 

and transformed (p=0.098) incidence data. After analysis, goodness of fit of the model 

was determined by examining the coefficient of determination (R
2
), which is the 

proportion of the variation in the disease incidence accounted for by cultivar and 

altitude. Residual standard error was also examined in both untransformed and 

transformed data. Lower value of Adjusted R-squared on arcsine transformed TYLCD 

disease incidence data indicated poor fit. 

 

 

 

 



 

36 

 

Table 4.7: Estimated parameter values of the logistic Regression model on 

Tomato Yellow Leaf Curl Disease incidence 

Cultivar β Std  Error z value(χ
2
) p-value odds 

ratio 

Intercept 7.827e+00     3.815e+00      2.052          0.04020 *           2.51e+03          

Honex -2.143e+01     3.120e+03     -0.007 0.99452             4.93e-10                                              

Maglobu -2.064e+01     7.062e+03     -0.003       0.99767             1.09e-09                         

Mandeli -2.170e+01     4.987e+03     -0.004       0.99653             3.76e-10           

Meru 5.033e-01      1.523e+00 0.331         0.74096             1.65e+00                                    

Mshumaa -2.457e+00      8.402e-01     -2.925        0.00345 **        8.57e-02          

Sadiki -2.146e+01     7.062e+03      -0.003        0.99758             4.78e-10                           

Tanya           -3.507e+00     7.292e-01      -4.809        1.51e-06***     3.00e-02                     

Tengeru        -2.827e+00     1.132e+00     -2.497         0.01253 *          5.92e-02        

Tengeru 97    -3.683e+00     1.266e+00     -2.910        0.00362 **        2.52e-02          

Top harvest   -2.093e+01    7.062e+03     -0.003         0.99764             8.13e-10                             

Unknown -3.430e+00     8.242e-01     -4.161         3.17e-05 ***     3.24e-02         

Wonex -3.030e+00     1.066e+00     -2.841        0.00449 **         4.83e-02         

Altitude             -8.306e-03      3.359e-03        -2.473         0.01340 *          9.92e-01           

Null deviance: 84.128 on 40 degrees of freedom 

Residual deviance: 35.758 on 27 degrees of freedom 

AIC: 94.618 
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Table 4.8: Analysis of Deviance of logistic regression model 

 

 

 

 

 

 

 

 

 

 

 

Logistic regression model was fitted to the TYLCD incidence data by the maximum 

likelihood method to the explanatory variables cultivar and altitude. The results 

(Table 4.8) showed that the two independent variables cultivar and altitude were 

significant different (χ
2
=39.62, p=0.001; χ

2
=8.75, p=0.003 respectively. Deviance and 

Pearson statistics are both types of residuals where “The larger p-value the better fit of 

the model to the data”. 

Evaluation of logistic regression model was performed using Deviance and Pearson 

statistics (Chi-square distribution). The insignificant results (p=0.1207) for Deviance 

and (p=0.0896) for Pearson at a 0.05 significant level indicated that the model fitted 

well the data (Barrett, 2007; Hosmer and Lemeshow, 2000; McCullagh and Nelder, 

1989). 

 

 

 Df Deviance 

Resid.     

Df Resid. Dev      Pr(>Chi)     

NULL   40 84.128                

Cultivar 12 39.618                   28 44.511             8.321e-05 *** 

Altitude 1 8.753                     27 35.758            0.003092 ** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

GOODNESS OF FIT TEST                                            p-value 

Deviance     0.1207 

Pearson     0.0896 
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Table 4.9: Estimated p-values from analysis of variance on whitefly abundance 

data 

Predictors   p-value before Transformation      p-value of Square root Transformation    

Cultivar          2.014e-05 ***                                                    0.005461 ** 

Altitude          0.7517                                                                0.7994 

GOODNESS OF FIT TEST 

Adjusted R-squared           0.6296                                            0.3932 

Residual standard error    10.97                                               1.67 

 

When analysis of variance performed on whitefly abundance, raw data indicated 

cultivar were significantly different (p=2.014e-05) while altitude was non-significant 

different (p=0.7517; Table 7). Residual standard error being larger than zero (Table 

4.9) indicated poor goodness of fit. When whitefly counts data were transformed 

using square root technique, residual standard error continued to be greater than zero 

which also indicated poor goodness of fit. 
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Table 4.10: Estimated parameter values of Poisson Regression Model on whitefly 

counts  

Cultivar                  β                      Std  Error               z- value(χ
2
)      

      
 p-value                   

(Intercept)        5.290e+00             6.550e-01                    8.076                6.70e-16 *** 

Honex               -3.009e+00             2.370e-01                  -12.699            < 2e-16 *** 

Maglobu            -1.985e+00            3.079e-01                   -6.445                1.15e-10 *** 

Mandeli             -1.210e+00            1.792e-01                   -6.754                1.43e-11 *** 

Meru                 -3.166e+00             6.141e-01                   -5.156                2.52e-07 *** 

Mshumaa           -2.503e+00            2.801e-01                  -8.936               < 2e-16 *** 

Sadiki            -4.454e-01              1.721e-01                  -2.589                 0.00963 ** 

 Tanya                 -1.798e+00            1.503e-01                  -11.963              < 2e-16 *** 

Tengeru               -1.985e+01           1.276e+03                 -0.016                   0.99     

Tengeru 97        -1.993e+01             1.276e+03                 -0.016                  0.99     

Top harvest       -1.786e+00           2.791e-01                  -6.399                  1.56e-10 *** 

Unknown            -2.406e+00            1.586e-01                 -15.175                < 2e-16 *** 

Wonex              -2.231e+00             3.389e-01                -6.581                  4.66e-11 *** 

Altitude             -7.097e-04              5.725e-04                  -1.240                 0.21511 

Null deviance: 763.72  on 40  degrees of freedom 

Residual deviance: 313.40  on 27  degrees of freedom 

AIC: 475.22 
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Table 4.11: Estimated parameter values of negative binomial model on whitefly 

abundance 

Cultivar          β              Std  Error     z- value(χ
2
)   p-value    odds ratio       

(Intercept)    5.569e+00     2.325e+00     2.395        0.01662 *     2.62e+02 

Honex         -3.064e+00    1.176e+00    -2.606      0.00916 **   4.67e-02 

Maglobu     -1.978e+00    1.511e+00    -1.309      0.19047        1.38e-01 

Mandeli      -1.230e+00    1.305e+00    -0.943      0.34569        2.92e-01 

Meru           -3.089e+00    1.693e+00    -1.825      0.06804        4.56e-02 

Mshumaa    -2.510e+00    1.312e+00    -1.912      0.05583        8.13e-02 

Sadiki         -4.632e-01      1.494e+00    -0.310     0.75647        6.30e-01 

Tanya         -1.842e+00     1.123e+00    -1.641     0.10082        1.59e-01 

Tengeru      -3.536e+01    2.946e+06      0.000     0.99999        4.39e-16 

Tengeru 97  -3.546e+01   2.946e+06     0.000      0.99999        3.98e-16 

Top harvest -1.788e+00    1.505e+00   -1.189      0.23460        1.67e-01 

Unknown     -2.356e+00   1.116e+00    -2.111     0.03477 *     9.48e-02 

Wonex         -2.279e+00   1.555e+00    -1.466     0.14276        1.02e-01 

Altitude       -9.570e-04    1.837e-03     -0.521     0.60245        9.99e-01 

Null deviance: 77.575  on 40  degrees of freedom 

Residual deviance: 47.985  on 27  degrees of freedom 

AIC: 300.11 
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Table 4.12: Analysis of Deviance of negative binomial model 

 

 

 

 

 

 

 

 

 

 

 

Poisson regression model was fitted to the whitefly abundance where over-dispersion 

was observed (Table 4.10). Due to over-dispersion, the negative binomial model was 

performed on the same data. According to the analysis of deviance (Table 4.12), there 

was a significant difference between cultivar (χ
2
=29.4200, p=0.003412) in a number 

of whitefly abundance accumulation while there was non-significant different of 

altitude (χ
2
= 0.1695, p= 0.680516) in influencing whitefly abundance accumulation. 

Akaike Information Criteria (AIC), Deviance and Pearson statistics were performed to 

evaluation the negative binomial model. Pearson (0.2796)                                                                                          

and Deviance (0.0077) with insignificant results indicated that the model fitted well to 

the data (Barrett, 2007; Hosmer and Lemeshow, 2000; McCullagh and Nelder, 1989). 

When AIC from Poisson regression model was compared with AIC from negative 

binomial model “the model with the lowest AIC is being the best model”. AIC value 

 Df Deviance 

Resid.     

Df Resid. Dev      Pr(>Chi)     

NULL                                          40         77.575  

Cultivar 12 29.4200 28 48.155           0.003 ** 

Altitude 1           0.1695                   27        47.985           0.68    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

GOODNESS OF FIT TEST                         p-value 

Deviance    0.0077  

Pearson                                                                                                   0.2796  
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of Poisson model of 475.22 to 300.11 of negative binomial indicated that negative 

binomial model was the best model compared to Poisson regression. 
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4.2 DISCUSSION 

Raw tomato fruit weight data never deviated from the normal distribution and equal 

variance (Table 4.1; Fig 4.1). Despite of data transformation, raw and arcsine 

transformed tomato yellow leaf curl disease incidence data were non-normal (Table 

4.2; Fig 4.2; Fig 4.3). Also raw and square root transformed whitefly abundance data 

were not normally distributed (Table 4.3; Fig 4.4; Figure 4.5). This is in conformity 

with many growing literatures that transformation tools like arcsine transformation, 

does not always ensure normality (Martub et al., 2005; Warton, 2005; Fletcher et al., 

2005; McArdle and Anderson, 2004). Still if the approximate normality is indicated 

by the statistics like p-value and graphs on the transformed data, if the data come from 

some supplementary distribution than normal then the significant test  expected to 

give over-or under- estimated coefficients, larger standard errors and biased  p-value 

(Menard,1995). This statement is supported by the results provided at arcsine 

transformed column (Table: 4.6) where cultivar (p=0.1447) and altitude (p=0.0957) 

had non-significant different results compared to logistic regression model (Table 4.8) 

with cultivar (p=8.321e-05) which is significant different. The same variable which is 

cultivar has two different p-values when subjected to two different models. Therefore, 

the results obtained from normality and equal variance test using tomato fruit weight 

data revealed that continuous data continue to adhere to the assumptions of normality 

and equal variance (Perry et al., 2003) while arcsine and square root transformation 

does not necessary each time ensure normality and equal variance.  

ANOVA (Table 4.4) was fitted to the tomato fruit weight data, there was significant 

different in cultivar (p=0.0379). The Model evaluation (goodness of fit test) indicated 

that the model fitted well the tomato fruit weight data based on Multiple R square 

(higher value the better model) and residual standard errors (small closer to zero is the 
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better model). These findings are in agreements with that ANOVA is the best 

statistical tools for analysis of continuous data which normally holds the assumptions 

of normally distribution and homogeneity of variance (Perry et al., 2003). 

Analysis of variance (Table 4.6) was performed to reveal the effect of cultivar and 

altitude in two forms of data. In raw (untransformed ) data cultivar  indicated 

statistical significant different (p=0.0019) on the influence of tomato yellow leaf curl 

disease incidence as main effect while it showed that there was no significant 

difference (p=0.1447) on non-normal arcsine transformed tomato yellow leaf curl 

disease incidence data. On the other hand, altitude had no significant effect 

(p=0.4723) on untransformed and transformed incidence data (0.0957). After analysis, 

goodness of fit of the model was determined by examining the coefficient of 

determination (R
2
), which is the proportion of the variation in the disease incidence 

accounted for by cultivar and altitude. Residual standard error was also examined in 

both untransformed and transformed data. Lower value of Adjusted R-squared on 

arcsine transformed TYLCD disease incidence data indicated poor fit. 

When logistic regression model was used to the same tomato yellow leaf curl disease 

incidence data, cultivar (p=8.321e-05) and altitude (p=0.0031) in (Table 4.8) were 

significant different in influencing tomato yellow leaf curl disease incidence which is 

in disagreement with the ANOVA results of the same arcsine transformed data which 

showed cultivar (p=0.1447) and altitude (p=0.0957) being insignificant. Goodness of 

fit tests Deviance (p=0.1207) and Pearson (p=0.0896) statistics indicated that logistic 

regression model was the best and appropriate statistical tool in modeling tomato 

yellow leaf curl disease incidence. 

 When ANOVA was used on raw and square root transformed whitefly abundance 

data, cultivar was significantly different (p=2.014e-05) and (p=0.0055) respectively 
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with residual standard error greater than one. This indicated that the ANOVA was not 

an appropriate statistical method to analyze whitefly abundance data due to 

heterogeneity of variance and non-normal of many counts data (Taylor, 1961). 

Clearly, the study also has established that square root transformation of whitefly 

abundance data do not necessary ensure normality. In many cases, the transformation 

applied to normalize the data may lead to heterogeneity of variance. This is for the 

reason that one transformation might be best for ensuring homogeneity of variance, 

while another might be best for ensuring normality. In this circumstance statistical 

requirement cannot be met with linear models (Garrett, Madden, Hughes and Pfender, 

2004). 

Poisson regression model (Table 4.10) was used on the whitefly abundance data to 

test the effect of cultivar and altitude on influencing the accumulation of whitefly 

abundance. Over dispersion, implying variance being larger than the mean or variance 

exceeds the theoretical variance (Mullay, 1997) was obtained in Poisson regression 

model, solving this negative binomial model (Table 4.11) was used as suggested by 

some researchers as an alternative to the Poisson when there is evidence of over-

dispersion (Paternoster and Brame, 1997; Osgood, 2000). Only cultivar (Table 4.12) 

was significantly different (p=0.003). Akaike Information Criteria was used for model 

selection between Poisson regression and negative binomial model because the use of 

AIC provides a consistent result and is independent of the order in which the models 

are computed (Anderson et al., 2000; Burnham and Anderson, 2002). Reduction in 

Akaike Information Criteria (AIC) from (475.22 for Poisson to 300.11for negative 

binomial model) and the results of goodness of fit test Deviance and Pearson (0.2796) 

statistics, all suggested that negative binomial model was better and a more 

convenient model for modeling whitefly abundance with over-dispersion (McRoberts 
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et al., 1996; Anscombe, 1949; Sileshi et al (a)., 2006; Sileshi et al (b)., 2006) 

compared to the Poisson regression model. Information criteria such as AIC offer a 

more objective way of defining which model amongst a set of models is the best 

appropriate for analysis of the data which available at hand to researchers (Akaike, 

1973; Yang, 2007). 

Generalized linear models allow an appropriate analysis of skewed frequency or 

binary data. Furthermore with GLMs, the properties of data from discrete 

distributions such as binomial distribution, Poisson and negative binomial can be 

accounted for (Hughes and Madden, 1995; Collett, 2002). For Incidence and counts 

data generalized linear models present tremendous opportunities for improvement of 

statistical inference. 
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CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 General Conclusion 

ANOVA was fitted into three different data sets, tomato fruit weight, tomato yellow 

leaf curl disease incidence and pest abundance. Then it was compared to logistic 

regression for tomato yellow leaf curl disease incidence and Poisson regression for 

pest abundance. ANOVA was an appropriate model and fitted well the fruit weight 

data because the data indicated normally distribution. For arcsine and square root 

transformed data, ANOVA showed to be inappropriate model and did not fit well the 

data because the transformation did not ensure normality of the data.  Poisson 

regression model for raw pest abundance was inappropriate models due to poor 

goodness of fit and over-dispersion. Solving the over-dispersion issue, a negative 

binomial model was applied for the pest abundance which revealed more sensitive 

analysis compared to standard ANOVA and Poisson regression model for analysis of 

pest abundance. 

5.2 General Recommendation 

Application of generalized linear models could improve statistical inference of disease 

incidence and pest abundance when compared to standard ANOVA. Based on the 

findings of this study, it was recommended that the disease incidence and pest 

abundance data should be analyzed using generalized linear models instead of 

standard ANOVA. The results obtained from application of ANOVA to disease 

incidence and pest abundance showed that the model was inappropriate and did not fit 

well the data used in this study. 

 



 

48 

 

REFERENCES 

Agresti, A. 2002. Categorical Data Analysis Wiley-Interscience, New York. 

Akaike, H. 1973. Information theory and an extension of the maximum likelihood 

           principle. 2nd International symposium on Information theory, Ed. B. N. 

           Petrov and F. Csaki. Budapest; Akademia Kiado.267-281. 

Anderson, D.R., Burnham, K.P and Thompson, W.L. 2000. Null hypothesis testing: 

           problems, prevalence, and an alternative. Journal of Wildlife Management 

           64:912-923. 

Anderson, T.W and Darling, D.A. 1952. Asymptomatic theory of certain “goodness- 

          of-fit”    criteria based on stochastic processes.Ann.Math.Stat.23:193-212. 

Anscombe, F.J. 1949. The analysis of insect counts based on the negative binomial 

           distribution. Biometrics 5:165-173. 

Armitage, P and Colton, T. 1998. Encyclopedia of Biostatistics. Wiley. New York. 

Barrett, P. 2007. "Structural Equation Modeling: Adjudging Model Fit," Personality 

           Individual Differences, 42(5): 815-24. 

Box, G.E.P., and Cox D.R. 1964. An analysis of transformations. Journal of the  

          Statistical Society, 26:211-234.  

Burnham, K.P., and Anderson, D.R. 2002. Model Selection and Multimode Inference: 

           practical information-theoretic approach, 2nd edition. Springer-Verlag, New 

           York. 

Cameron, A.C., Trivedi, P.K. 1998. Regression analysis for count data. Econometrics 

           Society Monographs No. 30. Cambridge University Press. Cambridge (UK). 

Campbell, C.L and Madden, L.V. 1990. Introduction to plant Disease Epidemiology. 

           New York: Wiley Interscience. 532pp. 

 



 

49 

 

Chellemi, D.O., Rohrbach, K.G., Yost, R.S and Sonoda, R.M. 1988. Analysis of the 

           spatial pattern of plant pathogens and diseased plants using Geostatistics. 

           Phytopathology 78:221-226 

Chester, K.S. 1950. Plant disease loss: their appraisal and interpretation. Plant Disease 

           Reporter Supplement No. 193:189-362. 

Cochran, W.G. 1940. The analysis of variances when experimental errors follow the 

           Poisson or binomial laws. The Annals of Mathematical Statistics 11: 335-347. 

Cochran, W.G. 1947. Some consequences when the assumptions for the analysis of 

           variance are not satisfied. Biometrics 3: 22.38. 

Collett, D. 2002. Modeling Binary Data. 2
nd

 edition.CRS Press, Boca Raton, FL  

Cox, D.R and Snell, E.J. 1989. The Analysis of Binary Data. 2nd ed. London. 

           Chapman and Hall. p. 236. 

De Wolf, E.D., Madden, L.V., and Lipps, P.E. 2003. Risk assessment models for 

           wheat Fusarium head blight epidemics based on within-season weather data. 

           Phytopathology, 93: 428–435. 

Fletcher, D., MacKenzie, D and Villouta, E. 2005. Modeling skewed data with many 

            zeros: a simple approach combining ordinary and logistic regression.  

Fligner, M.A and Killeen, T.J. 1976. Distribution-free two-sample tests for scale. 

          ‘Journal of the American Statistical Association.71 (353), 210-213. 

Gardner, W., Mulvey, E.P., Shaw, E.C. 1995. Regression analysis of counts and rates: 

            Poisson over dispersed Poisson and negative binomial models. Psychological 

           Bulletin, 118(3):392-404. 

Garrett, K.A., Madden, L.V., Hughes, G and Pfender, W.F. 2004. New applications of 

           statistical tools in plant pathology. Phytopathology 94:999-1003. 

 



 

50 

 

Green, S.K., Kalloo, G. 1994. Leaf curling and yellowing virus of pepper and tomato: 

           an overview. Technical Bulletin, Asian Vegetable Research and Development 

           Center.21: 151. 

Hardy, I.C.W. 2002. Sex ratios: Concepts and research methods. Cambridge 

           University Press. 

Hobson, G.E. and Davies, J.N. 1971. The tomato. In: Hulme AC (eds.). The 

           biochemistry of fruits and their products. Vol. 2. Academic press, New York 

           London. pp. 337– 482. 

Hosmer, D.W and Lemeshow, Jr. 2000. Applied logistic regression (2
nd

 ed.).New 

           York. Janik, J., & Kravitz, H.M 1994. Linking work and domestic problem 

           with police suicide.  Suicide and Life Threatening Behavior.24:267-274. 

Hughes, G and Gottwald, T.R. 1998. Survey methods for assessment of citrus tristeza 

           virus incidence. Phytopathology 88:715-723.7 

Hughes, G and Madden, L.V. 1995. Some methods allowing for aggregated patterns 

           of diseases incidences in the analysis of data from designed experiment. Plant 

           Pathology 44:927- 943. 

Hughes, G., and Gottwald, T.R. 1999. Survey methods for assessment of citrus 

           tristeza virus incidence when Toxoptera citricida is the predominant vector. 

           Phytopathology 89:487-494. 

Hughes, G., Munkvold, G.P., Samita, S. 1998. Application of the logistic-normal- 

          binomial distribution to the analysis of Eutypa dieback disease incidence. 

           International Journal of Pest Management 44: 35-42. 

Jaeger, T.F. 2008. Categorical data analysis: away from ANOVAs (transformation or  

          not) and towards Logit Mixed Models.J.Mem.Lang.59: 434-446. 

 



 

51 

 

Johnson, N.I and Kotz, S. 1969. Discrete Distributions. Houghton Mifflin Company, 

           Boston. 

Kalloo, G. 1991. Genetic improvement of tomato. Springer Verlag, Berlin Heidelberg, 

           Germany. p. 358. 

Kapa, J.M and Waterworth, H.E. 1981. Handbook of plant virus infections and 

           Comparative Diagnosis. Ed .E. Kursta,pp.257-332.Elsevier/North Holland, 

           New York. 

Kenney, J.F and Keeping, E.S. 1962. Skewness.7.10 in Mathematics of statistics, Pt. 

           1, 3
rd

  ed. Princeton, NJ: Van Nostrand. 

Kleinbaum, D.G., Kupper, L.L., Muller, K.E., Nizam, A. 1998. Applied regression 

           analysis  and other multivariable methods-Third Edition. Brooks/Cole 

           Publishing Company, Duxbury Press, Pacic Grove (CA). 

Kranz, J. 1988. Measuring plant disease. In Experimental Technique in Plant Disease 

            Epidemiology, eds, J Kranz, J Rotem. Springer-Verlag, Berlin, pp.35-50. 

Levene, H. 1960. Contributions to Probability and Statistics. 

Lucas, J.A. 1998. Plant pathology and plant pathogens (3
rd

 edn). Blackwell Science, 

           UK, p.274.  

Madden, L.V. 2002. A population-dynamic approach to assess the threat of plant 

           pathogens as biological weapons against annual crops. BioScience 52: 65-74. 

Madden, L.V and Hughes, G. 1995. Plant disease incidence: Distributions, 

           heterogeneity, and temporal analysis. Annual Review of Phytopathology 

           33:529-564 

Madden, L.V and Hughes, G. 1999. An effective sample size for predicting plant 

           disease incidence in a spatial hierarchy. Phytopathology 89: 770-781. 

 



 

52 

 

 

Madden, L.V., Turechek, W.W., and Nita, M. 2002. Evaluation of generalized linear 

           mixed models for analyzing disease incidence data obtained in designed 

           experiments. Plant Dis.86:316-325. 

Martub, T.G., Wubtek, B.A., Kuhnert, J.R., Field, P.M., Low-Choy, S.A., Tyre, S.J 

           Possingham, H.P. 2005. Aero tolerance ecology: improving ecological 

           inference by modelling the source of zero observations. Ecology Letters 8: 

           1235-1246. 

McArdle, B.H and Anderson, M.J. 2004. Variance heterogeneity, transformations, 

           and  models of species abundance: a cautionary tale. Canadian Journal of  

          Fisheries and Aquatic Sciences 61: 1294-1302. 

McCullagh, P and Nelder, J.A 1989. Generalized Linear Models, 2
nd

 edition, Longo, 

             Chapman and Hall). 

McRoberts, N., Hughes, G and Madden, L.V. 1996. Incorporating spatial variability 

           into simple disease progress models for crop pathogens. Aspects of Applied 

           Biology 46: 1-8. 

McRoberts, N., Hughes, G and Madden, L.V. 2003. The theoretical basis and 

           practical application of relationships between different disease intensity 

           measurements in plants. Ann.Appl.Biol.142:191-211. 

Menard, S. 1995. Applied logistic regression analysis. Sage University Paper series 

           on Quantitative Applications in the Social Sciences series no. 07-106.Thousand 

          Oak(CA). 

Miles, J and Shevlin, M. 2001. Applying Regression and Correlation. London: Sage. 

Mullahy, J. 1997. Heterogeneity, excess zeros, and the structure of count data models. 

           Journal of Applied Econometrics 12: 337–350. 



 

53 

 

 

Nutter, F.W. Jr., Teng, P.S and Shokes. 1991. Disease assessment terms and concepts. 

            plant Dis. 75: 1187-1188. 

Nutter, F.W., Esker, P.D and Netto, R.A. C. 2006. Disease assessment concepts and 

           the advancements made in improving the accuracy and precision of plant 

           disease data. European Journal of Plant Pathology, 115:95-1371. 

Nutter, F.W., Teng, P.S and Royer, M.H. 1993. Terms and concepts for yield, crop los 

            and disease thresholds. Plant Disease 77:211-215. 

Osgood, W. 2000. Poisson-based Regression Analysis of Aggregate Crime Rates." 

           Journal of Quantitative Criminology 16: 21-43. 

Paternoster, R and Brame, R. 1997. Multiple Routes to Delinquency? A Test 

           Developmental and General Theories of Crime," Criminology 35: 45-84. 

Perry, J.N., Rothery, P., Clark, S.J., Heard, M.S and Hawes, C. 2003. Design, analysis 

           and statistical power of the farm scale evaluation of genetically modified 

           herbicide-tolerant crops. Journal of Applied Ecology 40: 17–31. 

           Phytopathology78:221-226. 

Rao, M.M. 1960. Some asymptotic results on transformations in the analysis of 

           variance. ARLTechnical Note, 60-126. Aerospace Research Laboratory, 

           Wright-Patterson Air Force Base. 

Ridout, M., Demetrio, C.G. B and Hinde, J. 1998. Models for counts data with many 

           zeros Invited paper presented at the Nineteenth International Biometric  

          Conference, Cape Town, South Africa, 179-190. 

Saha, K and Paul, S. 2005. Bias-corrected maximum likelihood estimator of the 

           negative binomial dispersion parameter. Biometrics 61: 179.185. 

Sakia, R.M. 1992. The Box-Cox transformation technique: A review. The 



 

54 

 

           statistician, 41:169-178. 

Schabenberger, O and Pierce, F.J. 2002. Contemporary Statistical Models for the 

           Plant and Soil Sciences. CRC Press, Boca Raton, FL. 

Seem, R.C. 1984. Disease incidence and severity relationships. Annual Review of  

          Phytopathology. 22:137-50. 

Shapiro, S.S and Wilk, M.B.1965. Analysis of variance test for normality. Biometrika 

           52:591-611 

Sileshi, G., Girma, H and Mafongoya, P.L. 2006 (a). Occupancy-abundance models 

           For predicting Efficient Analysis of Abundance and Incidence Data densities 

           of three leaf beetles damaging the multipurpose tree Sesbania sesban in  

           eastern and southern Africa. Bulletin of Entomological Research 96:61-69. 

Sileshi, G., Mafongoya, P.L and Kuntashula, E. 2006 (b). Legume improved fallows 

           reduce weed problems in maize in eastern Zambia. Zambian Journal of  

           Agriculture.8:12. 

Snedecor, G.W and Cochran, W.G. 1989. Statistical methods. 8th edition, Iowa State 

           University, Ames. 

Sseruwagi, P., Sserubombwe, W.S., Legg, J.P., Ndunguru, J., Thresh, J.M. 2004. 

           Methods of Surveying the incidence and Severity of Cassava Mosaic Disease 

           and Whitefly Vector Populations on Cassava in Africa: a review. Available 

           online at www.sciencedirect.com,2004 

Steel, R.G.D and Torrie, J.H. (1997). Principles and procedures of statistics. McGraw 

             Hill  Book Co., NY. USA. 

Strange, R.N. 2003. Introduction to plant pathology. John Wiley & Sons Ltd., UK, 

            464pp. 

Taylor, L.R. 1961. Aggregation, variance and the mean. Nature 189: 732–735. 

http://www.sciencedirect.com,2004/


 

55 

 

Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA 

Turechek, W.W. 2004. Nonparametric tests in plant disease epidemiology: 

            characterizing disease associations. Phytopathology 94:1018-1021. 

Wang, W and Famoye, F. 1997. Modeling household fertility decisions with 

           generalized poisson regression. Journal of population Economics 10:273-283  

Warton, D.I. 2005. Many zeros does not mean zero inflation: comparing the 

           goodness-of- fit of parametric models to multivariate abundance data. 

           Environ metrics 16 275–289. 

Warton, D.I. and Hui, F.K.C. 2010. The arcsine is asinine: the analysis of proportions 

           in ecology, Ecology. 

Winer, B.J., Brown, D.R and Michels, K.M. 1971. Statistical principles in 

           experimental design. New York: McGraw-Hill. 

Wulu, J.T., Singh, K.P., Famoye, F and McGwin, G. 2002. Regression analysis of 

           count data. Journal of the Indian Society of Agricultural Statistics 55:220- 

           231www.sciencedirect.com, 2004. 

Yang, Y. 2005. Can the strengths of AIC and BIC be shared? A conict between 

            identication and regression estimation. Biometrika, 92: 937-950. 

Zadoks, J.C and Schein, R.D. 1976. Epidemiology and plant Disease Management. 

            Oxford University Press, New York, 427pp. 

 

 

 

http://www.sciencedirect.com/


 

56 

 

APPENDICES 

Appendix 1:  TYLCD incidence and Whitefly counts survey data sheet 

 

 

FIELD     

NO 

CULTIVAR 

NAME 

ALTITUDE TOTAL 

PLANT  

INFECTED 

PLANTS 

WHITEFLY 

COUNTS 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

16      

17      

18      
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Appendix 2: Tomato fruit weight data sheet 

 

 

CULTIVAR NAME REPLICATION Fruit weight(KG) 

CNL 3125E 1  

CNL 3125L 1  

CNL3125P 1  

CNL3078G 1  

CNL 3070J 1  

TENGERU 1  

TANYA 1  

CNL 3125E 2  

CNL 3125L 2  

CNL3125P 2  

CNL3078G 2  

CNL 3070J 2  

TENGERU 2  

TANYA 2  

CNL 3125E 3  

CNL 3125L 3  

CNL3125P 3  

CNL3078G 3  

CNL 3070J 3  

TENGERU 3  

TANYA 3  


