
71Fifth RUFORUM Biennial Regional Conference 17 - 21 October 2016, Cape Town, South Africa

RUFORUM Working Document Series (ISSN 1607-9345) No. 14 (3): 71 - 76.

Available from http://repository.ruforum.org

Research Application Summary

AgriMatch: A dynamic Ontology Matching System

Ochieng, P. & Kyanda, S.

Department of Computer Science and Information Systems Makerere University, P. O. Box 7062,

Kampala, Uganda

Corresponding author: kswaibk@cis.mak.ac.ug

Abstract

Multiple conceptualizations are inevitable, especially in a widely distributed large scale system

like the web. Every information community share a given conceptualization which may be

different from another information community. Despite this difference in views, people and

organizations need to exchange information. Data from various systems, structured under

different information models, need to be integrated and accessed uniformly for various

purposes. A possible way of dealing with this problem is to consolidate multiple

conceptualizations into a unified form. Corresponding elements of the multiple

conceptualizations may be mapped and treated uniformly. The aligned conceptualization

(known as ontologies) can be used to annotate a document to add more meaning to the

document. A search performed over these pages returns more informative that has high

precision and recall.

Key words: Information community, information models, web

Résumé

Les conceptualisations multiples sont inévitables, en particulier dans un système largement

répandu comme le web. Chaque communauté d’information partage une conceptualisation

donnée qui peut être différente d’une autre communauté d’information. Malgré cette

différence perçue, le monde et les organisations auront toujours besoin d’échanger des

informations. Les données provenant de divers systèmes, structurées sous différents modèles

d’information, doivent être intégrées et accessibles uniformément à diverses fins. Un moyen

possible de traiter ce problème est de consolider plusieurs conceptualisations sous une forme

unifiée. Les éléments correspondants des multiples conceptualisations peuvent être

cartographiés et traités uniformément. La conceptualisation alignée peut être utilisée pour

annoter un document afin d’y ajouter plus de significations. Une recherche effectuée sur

ces pages produit plus d’information avec précision.

Mots clés: Communauté d’information, modèles d’information, web

72 Ochieng, P. & Kyanda, S.

User scenario

Peter, a Ugandan Farmer at Mukono district, wants to find out how Kenyans treat Newcastle

disease in layer chicken which has been killing his birds for years. Using the current social

web (2.0) Peter decides to use Google search engine using the words “How Kenyans treat

Newcastle’’. This returns multiple pages to him which have different combination of the

words Newcastle, disease, layers. Peter has to open pages one at a time extracting the

required information. It is worth noting that this search has some key limitation. For instance,

web pages of the Kenya government website dealing with Newcastle disease have the

word Avian pneumoencephalitis instead of Newcastle. Therefore this page which is crucial

to Peter is completely missed in the search though it might contain crucial information he is

looking for. The current web therefore has no mechanism of solving words with same

meaning but different representation. If a page has no key words used in the search crucial

information is left out, i.e., the web has no intelligence to resolve different conceptualizations.

Irrelevant pages which contain the sets of the keywords used in the search may also be

fetched by the query wasting Peter’s time. Peter has to read multiple pages to get aggregated

information he is looking for. All information cannot be found in one page. This therefore

raises key technical issues that have to be addressed to enable data integration:

1. Can all information required by the user be aggregated using a single search?

2. Can irrelevant pages be sifted out of the search pages returned?

3. Can a search engine pick all relevant pages including those using different terms but

same meaning?

State of the Art

Many diverse solutions have been proposed to perform ontology matching task, and the

most recent survey of the ontology matching tools are discussed in Shvaiko and Euzenat

(2013) and Otero-Cerdeira et al. (2015). The key challenges in ontology matching are also

discussed in Pavel Shvaiko and Jerome Euzenat (2008). The objectives of this study were

to: (i) create an ontology matching algorithm to match various agricultural domain ontologies,

(ii) build a natural language (NL) processing framework that converts user queries written

in natural language into SPARQL query, and (iii) create a user Interface for query input and

displaying the results to the user

Methodology

The ontology matching model is shown in Figure 1. It has the following modules:

Ontology Loader module. Ontology loader is implemented such that the ontologies to be

matched (source and target) are loaded into memory using University Manchester OWL

API (Manchester, n.d.).

Feature Extractor module. In order to match entity A and B from two ontologies the

Feature extractor module extracts all annotations (local names, synonyms and labels) of

73Fifth RUFORUM Biennial Regional Conference 17 - 21 October 2016, Cape Town, South Africa

their children and the level of the child in the hierarchy from the entity to be matched. This

information is stored in two Java HashMaps HashA and HashB, respectively. The HashMaps

are implemented as Multimaps where the key is the class name of the child in the taxonomy

and values are be the annotations extracted and the level of the child in the taxonomy from

the parent. The goal of using HashMaps is to avoid against all comparison as proposed in

Faria et al. (2013), since O(M× N) does not scale up well for large ontologies.

Feature Matcher Module. To get similar and dissimilar features shared between the

two entities, the values of HashA is queried against HashB (note this can be in either

direction) using entity (concept) name as the query value. If a similar feature is returned

from HashB their level in both HashMaps are compared. If they are of the same level, a

weight of 1 is assigned to the similarity. This is referred to as LEVEL weight. Otherwise a

value of 0.1 is subtracted from 1 depending on the difference in levels. Also the type of

matching features are assigned weight dynamically, this weight is referred to as FEATURE

weight. The weight of the similarity feature is computed according to Equation 1. The

similar feature and its weight is stored in a third HashMap HashCommon which has similarity

feature as the key and weights as the values. The similar features are removed from HashA

and HashB, otherwise no removal is done. This is done until all the features in HashA have

been queried against HashB. Now all features that are similar will be stored in HashCommon

and all dissimilar features will remain in HashA and HashB.

featureWeight = LevelWeight x FeatureWeight .. (1)

Similarity Computation Module. After taxonomically getting all the similar and dissimilar

features of the two entities being compared, the probability of a given feature P(c) that

appears in the common features set and probability of a given feature appearing in the

Figure1. AgriMatch ontology matching model

74 Ochieng, P. & Kyanda, S.

dissimilar features set are calculated (Resnik, 1995). Frequency of a given feature is computed

by counting the occurrence of all children noun of a given feature in the taxonomy according

to the equation. We the use geometric mean as proposed in Sánchez et al. (2012).

Natural Language processing and SPARQL Generation

Ontology is written is OWL or RDFS, which is mostly queried using SPARQL which most

normal users cannot write. Hence users are allowed to write their queries using their

normal natural language that they understand. The system converts NL to SPARQL without

user knowledge and returns answers in normal English. We implemented the system as

shown in Figure 2.

Results and evaluation

We performed two sets of experiments. First to establish how matching algorithm perform

in terms of Precision (a measure of the ratio of correctly found correspondences over the

total number of returned correspondences). Recall (the ratio of correctly found

correspondences over total number of expected correspondences) and F-measure were

used to compared it with other leading ontology matching algorithms AML (Faria et al.,

2013) and YAM++ (Ngo and Bellahsene, 2012). Results are shown in Table 1.

Figure 2. Overall system architecture combining Natural Language converter and Ontology

Matching

75Fifth RUFORUM Biennial Regional Conference 17 - 21 October 2016, Cape Town, South Africa

The second experiment was to assess how many of the translated queries correctly represent

the semantics of the original natural language queries. We compared the output with the

manually generated SPARQL queries. The metrics we used are precision and recall. For

each domain, precision means the percentage of correctly translated queries in the queries

that our system produced as output; recall refers to the percentage of queries that AgriMatch

produced an output in the total testing query set. The results are shown in Table 2.

Conclusion

The aligned conceptualization (known as ontologies) can be used to annotate a document to

add more meaning to the document. A search performed over these pages returns more

informative that has high precision and recall.

Acknowledgement

This paper is a contribution to the 2016 Fifth African Higher Education Week and RUFORUM

Biennial Conference.

References

Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F. and Couto, F.M. 2013. Matching

System. Springer Berlin Heidelberg 527-541.

Manchester, U. of. (n.d.). OWL API. Retrieved from http://owlapi.sourceforge.net/

Ngo, D. and Bellahsene, Z. 2012. Yam++: A multi-strategy based approach for ontology

matching task. Springer, Heidelberg 7603: 421-425.

Otero-Cerdeira, L., Rodríguez-Martínez, F.J. and Gómez-Rodríguez, A. 2015. Ontology

matching: A literature review. Expert Systems with Applications 42(2):949-971. http://

doi.org/10.1016/j.eswa.2014.08.032

Table 1. A comparison of the performance of Agrimatch with AML and YAM++

Method Precison (%) Recall (%) F-measure (%)

YAM++ 87.2 84.8 86.0

AML 84.7 71.8 78.0

AgriMatch 89.9 77.2 83.5

Table 2. Performance of Agrimatch in NLP processing

Method Geography Agriculture Job

Original number of user queries 880 250 641

Number of selected Testing Queries 877 238 517

Precision 89.9 90.8 83.5

Recall 85.88 96.8 87.5

76 Ochieng, P. & Kyanda, S.

Pavel Shvaiko and Jerome Euzenat. 2008. Ten challenges for Ontology matching. In:

Proceedings of the 7th International Conference on Ontologies, DataBases, and

Applications of Semantics (ODBASE). pp. 1163-1181.

Resnik, P. 1995. Taxonomy. In: 14th International Joint Conference on Artificial

Intelligence (Vol. 1). Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc.

Sánchez, D., Batet, M., Isern, D. and Valls, A. 2012. Ontology-based semantic similarity: A

new feature-based approach. Expert Systems with Applications 39:7718-7728.

Shvaiko, P. and Euzenat, J. 2013. Ontology Matching: State of the art and future challenges.

IEEE Transactions on Knowledge and Data Engineering 25 (X): 158-176. http://

doi.org/10.1109/TKDE.2011.253.

