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Course Description

This course introduces you to the theory and practice in econometrics for graduate students. While a sound understanding of econometric theory will be beneficial, the course emphasizes the techniques for basic empirical research, interpretation of quantitative results and model evaluations. The contents will cover basics of ordinary least square methods, model specification, maximum likelihood estimation and Limited dependent variable models.
Course Pre-Requisites

Students should have a minimum of one junior-level (intermediate) undergraduate courses in statistics and two mathematics courses.  Students are expected to be good in some statistical software such as SPSS, STATA and LIMDEP. 

Course Objectives

This course aims to provide an introduction to analyze economic problems using quantitative methods by linking essentials of econometric theory to estimation techniques. At the end of this course, students will be expected to have gained basic skills in developing and interpreting models as applied to a variety of economic problems and data. Additional emphasis is placed on how to deal with economic data, developing a research project, and in developing critical thinking skills in applied economic analysis. By the end of this course the students should be able to: 

· Apply  econometric theory to real world problems;
· Describe the application of  statistical concepts to economic analysis;

· Analyze econometric models using real world data;

· Perform research projects

Course Introduction 

In this course we discuss the basic ideas and the tools used for analyzing economic data. We start with the definition of the subject: Econometrics is the application of statistical techniques and analyses to the study of problems and issues in economics. The word econometrics was coined in 1926 by Frisch, a Norwegian economist who shared the first Nobel Prize in Economics in 1969 with another econometrics pioneer, Tinbergen. Even if many economists had used data and made calculations long before 1926, Frisch felt he needed a new word to describe how he interpreted and used data in economics. Today, econometrics is a broad area of study within economics. The field changes constantly as new tools and techniques are added. Its center, however, contains a stable set of fundamental ideas and principles. This course is about the core of econometrics. We will elucidate the basic logic and methodology of econometrics, concentrating on getting the core ideas exactly right. We divide the study of econometrics in this course into the following two fundamental parts: Description and Inference.

In each Topic, regression analysis will be the primary tool. By showing regression again and again in a variety of contexts, we strengthen the idea that it is influential, flexible method that defines much of econometrics. At the same time, however, we illustrate the conditions that must be met for its appropriate use and the situations in which regression analysis may lead to unfortunately wrong conclusions if these conditions are not met. 

Course Learning Outcomes

Upon successful completion of this course students will be able to:

· Explain important statistical and econometric concepts.

· Apply basic simple and multiple linear regression, and Ordinary Least Squares (OLS) estimation procedure to real world problems. 

· Generate and test hypotheses.

· Explain basic assumptions of the OLS, test their validity in practical situations, and deal with their violations.

· Describe the features of different types of economic data, and command some basic tools and techniques of econometric analysis.

· Manage basic data.

·  Use several statistical and econometric analyzing tools and techniques e.g. statistical package Stata.

Course Reading Materials

Gujarati, D. N., 2005. Basic Econometrics. McGraw Hill, Fourth edition. 

Gujarati, D. N., 1999. Essentials of Econometrics. McGraw-Hill, Second edition.
Maddala, G. S., 2001. Introduction to Econometrics. John Wiley, Third Edition. 
Wooldridge J. M., 2009. Introductory Econometrics. A Modern Approach. 

South-Western, Fourth edition.
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Topic 1: Introduction to Econometrics

Learning Objectives
By the end of this topic, students should be able to:
· Define econometrics as a discipline;

· List the important uses of econometrics; 

· Identify the basic components of econometrics;

· Use statistical concepts in econometrics;

· Apply statistical tests on some economic problems.


Key Terms: Econometrics, DGP, Estimation, Specification, Descriptive statistics, Inferential statistics, hypothesis testing. 

Introduction 

Under this topic we begin with the definition of econometrics. Different authors defined econometrics differently, but the core idea remains similar.  The term econometrics was coined in 1926 by a Norwegian economist Frisch who shared the first Nobel Prize in Economics in 1969 with another econometrics pioneer, Tinbergen. Although many economists had used data and made calculations long before 1926, Frisch felt he needed a new word to describe how he interpreted and used data in economics. Today, econometrics is a broad area of study within economics. The field changes constantly as new tools and techniques are added. Its center, however, contains a stable set of fundamental ideas and principles. Its uses and basic elements will also be presented under this topic. Finally we will review basic statistical concepts that have wider applications in Econometrics.
1.1 What is Econometrics?
In the field of Economics, more and more emphasis is being placed on developing and utilizing statistical techniques for analyzing economic problems. Econometrics is the systematic testing of theory against facts used by economists. Salvatore defined econometrics as: “...the application of economic theory, mathematics, and statistical techniques for the purpose of testing hypotheses and estimating and forecasting economic phenomena.” Theoretical relationships among variables are usually expressed in mathematical form, and economists use statistical analysis to test hypotheses about these relationships, to estimate actual magnitudes, and use these estimates to make quantitative predictions of economic events.

Kelejian and Oates defined Econometrics as the branch of economics dealing with the quantitative analysis of economic behavior. It serves two functions. First, it provides techniques for verifying or refuting theories, and, second, it provides quantitative estimates of the magnitudes of the relationships among variables. A set of definitions and assumptions that an economist can use to explain certain types of events is called an economic theory. This theory can aid the economist in determining how certain economic variables interact.

In order to evaluate the usefulness of theories, we need to determine their reliability in predicting economic events. Economic theories are, therefore, generally stated in a form that specifies some implied causal sequence of events. These are typically based on the assumption that other relevant factors are held constant. It will be expressed in a mathematical form by noting that one variable is a function of another variable and specifying the general character of the relationship involved. The problem that economists face is that most of their data come from daily experiences, and, therefore, in the real world other relevant factors are rarely unchanged.

However, econometricians have devised statistical techniques in order to artificially hold the other influences constant on the variable in question. In this way, they can determine the effect of one variable on another variable. While knowledge of the general character of these relationships is valuable, it is usually not adequate in order to make decisions. Therefore, quantitative techniques must be capable of generating estimates of magnitude in addition to providing an assessment of the more general propositions typically suggested by economic theory. 
In summary, econometrics can be defined as economic measurement. It is a mixture of many ingredients: maths, statistics, economics, computing. It is mostly based around estimation and testing of regression models.

Class Discussion 1.1: Provide your views on why econometrics can be considered as a separate discipline.
1.1.1. Why econometrics? 

Econometrics is mainly concerned with the identification of a causal effect of one or more variables called independent variables on another variable called dependent variable. Econometrics uses non-experimental or observational data to draw conclusions about the real world which enables us to apply economic theory to real world data. In addition, econometrics can test and refine economic theory. For example, economic theory may be ambiguous about impact of a policy change. However, econometrics can evaluate the policy program using different econometric models such Propensity Score Matching or Differences in Differences methods. It is also true that econometric analysis is useful to decision makers. For example, policy makers are interested not only on the fact that extension contact improves farm productivity but the amount by which farm productivity changes if extension contact increases by one which is what regression is for.
The problem is that the relationship between two variables is often not exact. For example, farm productivity depends on education and extension contact; but there are other factors affecting it as well. These are farm size, soil fertility status, etc. Certainly, some of these variables can be omitted in the regression as it is difficult to observe everything. This leads to the omission of a relevant explanatory variable which introduces some noise and bias in the relationship. 
1.1.2. The methodology of econometrics 
Econometric analyses usually follow the following steps:

1. Statement of theory or hypothesis
What does economic theory tells you about the relationship between two or more variables? For example, Keynes stated: “Consumption increases as income increases, but not by as much as the increase in income”. It means that “The marginal propensity to consume (MPC) for a unit change in income is greater than zero but less than a unit”. 
2. Specification of the mathematical model of the theory
What functional relationship exists between the two variables? Is it linear or non-linear? According to Keynes, consumption expenditure and income are linearly related. That is, 
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Y = consumption expenditure, X = income and β0 and β1 are parameters; β0 is intercept, and β1 is slope coefficients.
3. Specification of the econometric model of the theory
There are other factors apart from income that affects consumption. Hence, 
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; where Y = consumption expenditure;   X = income;  β0 and  β1 are parameters; β0 is intercept and β1 is slope coefficients; u is disturbance term or error term. It is a random or stochastic variable that affects consumption.
4. Obtaining data 

Hypothesis testing requires collecting data from a sample. Suppose we obtained the following data on personal consumption expenditure and income from 12 individuals.   

Table 1.1. Personal consumption and income of 12 individuals

	Individual
	X
	Y

	1
2
3
4
5
6
7
8
9
10
11
12
	2447.1
2476.9
2503.7
2619.4
2746.1
2865.8
2969.1
3052.2
3162.4
3223.3
3260.4
3240.8
	3776.3
3843.1
3760.3
3906.6
4148.5
4279.8
4404.5
4539.9
4718.6
4838.0
4877.5
4821.0


 Y = Personal consumption expenditure
 X = Income in Ethiopian Birr
5. Estimating the econometric model
Suppose we run OLS and obtained  
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 = - 231.8 + 0.7194 X. Then MPC was about 0.72 and it means that for the sample individuals an increase in income by Birr 1, led (on average) to increases in consumption expenditure by about 72 cents.
6. Hypothesis testing
Are the estimates accords with the expectations of the theory that is being tested? Is MPC < 1 statistically? If so, it may support Keynes’ theory.
Confirmation or refutation of economic theories based on sample evidence is object of statistical analysis.
7. Forecasting or prediction
If we have time series data, with given future value(s) of X, we can estimate the future value(s) of Y. For example if the above data is the yearly consumption expenditure of an individual from from 1982 to 1993. If income = Birr 6000 in 1994 what is the forecast consumption expenditure?
The predicted value of Y is 
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= - 231.8+0.7196(6000) = 4084.6. The income multiplier M = 1/(1 – MPC) (=3.57). This implies a decrease (increase) of 1 Birr in investment will eventually lead to Birr 3.57 decrease (increase) in income.
8. Using model for control or policy purposes
Y = 4000= -231.8+0.7194 X implies that X = 5882 
The MPC = 0.72, an income of Birr 5882 will produce an expenditure of Birr 4000. By fiscal and monetary policy, government can manipulate the control variable X to get the desired level of target variable Y.
1.2 Uses of Econometrics 

The two main purposes of econometrics are to give empirical content to economic theory and to subject economic theory to potentially falsifying tests. For example, consider one of the basic relationships in economics, the relationship between the price of a commodity and the quantities of that commodity that people wish to purchase at each price (the demand relationship). According to economic theory, an increase in the price would lead to a decrease in the quantity demanded, holding other relevant variables constant to isolate the relationship of interest. A mathematical equation can be written that describes the relationship between quantity, price, other demand variables like income, and a random term ε to reflect simplification and imprecision of the theoretical model:

Q = β0 + β1 Price + β2 Income + ε

Regression analysis could be used to estimate the unknown parameters β0, β1 and β2 in the relationship, using data on price, income, and quantity. The model could then be tested for statistical significance as to whether an increase in price is associated with a decrease in the quantity, as hypothesized: β1 < 0. There are complications even in this simple example. In order to estimate the theoretical demand relationship, the observations in the data set must be price and quantity pairs that are collected along a demand relation that is stable. If those assumptions are not satisfied, a more sophisticated model or econometric method may be necessary to derive reliable estimates and tests.

1.2.1 Examples of questions that econometrics is useful for

For example, consider hours spent by extension agents advising farmers and farm productivity. How are hours spent by extension agents advising farmers and farm productivity related? Suppose the agricultural office imposes maximum number contacts with the farmers. How does this affect farmers’ performance? One theory is that age is irrelevant for farm productivity. Is this theory correct? 

1.3 The Four Basic Elements of Econometrics 

The four basic elements of econometrics include: Data, specification, estimation and inference. We will discuss them one by one.

1. Data
Collecting and coding the sample data, the raw material of econometrics. Most economic data is observational, or non-experimental, data (as distinct from experimental data generated under controlled experimental conditions). 
Economic data can be categorized into three:
i. Cross-sectional data

ii. Time series data

iii. Panel data

i. Cross-sectional data
A cross-sectional data set consists of a sample of individuals, households, firms, cities, states, countries or a variety of other units, taken at a given point in time. Examples include the Census of population or manufactures, or a poll or survey. Most M.Sc thesis researches are based on cross-sectional data.
ii. Time series data

A time series data set consists of observations on a variable or several variables over time. For example, GNP, employment rates, money supply collected over a period of time, daily, weekly, monthly or every year are examples of time series data.

iii. Panel data

A panel data set consists of a time series for each cross-sectional member in the data set. An example is a household survey (census) conducted every 10 years in Ethiopia.

Note that it is common to denote each observation by the letter t and the total number of observations by T for time series data, and to denote each observation by the letter i and the total number of observations by N for cross-sectional data.
Learning activity 1.1. Individually think about the data that you are going to use in your M.Sc thesis research. You may be selected to present your thinking to the whole class.

2. Specification 

This is about the specification of the econometric model that we think generated the sample data. That is, specification of the data generating process (or DGP).  An econometric model consists of two components: 
1.  An economic model: Specifies the dependent or outcome variable to be explained and the independent or explanatory variables that we think are related to the dependent variable of interest. It is often suggested or derived from economic theory. Sometimes it can be obtained from informal intuition and observation. 
2.  A statistical model: Specifies the statistical elements of the relationship under investigation, in particular the statistical properties of the random variables in the relationship. 
3. Estimation 

This consists of using the assembled sample data on the observable variables in the model to compute estimates of the numerical values of all the unknown parameters in the model. 
4. Inference 

This consists of using the parameter estimates computed from sample data to test hypotheses about the numerical values of the unknown population parameters that describe the behaviour of the population from which the sample was selected. 
Learning activity 1.2. Individually outline how your M.Sc thesis research consists of these four basic components of econometrics. You may be asked to present to the whole class.

1.4 Review of Basic Statistics

In this subtopic, we will review a few features of statistics that come up frequently in econometric analysis of agricultural data. Probability and statistics play a major role in estimating econometric models, as we are concerned with the statistical relationships among variables, not deterministic as in say classical physics.  In looking at statistical relationships we deal with random variables, or stochastic variables - variables that have probability distributions. In fact, the dependent variable is assumed to be random, to have a probability distribution, but the independent variables are assumed to be fixed, have fixed values in repeated sampling - even though they may be intrinsically stochastic. 

Note also that we look at the dependence of one variable on another, but this does not necessarily mean one variable causes another - although it may.  We have to look at theory to figure out whether or not we can reasonably assume causation.  Take Philips curve - do high money wages lead to lower unemployment, does lower unemployment lead to high money wages, or does some other factor cause both? The emphasis here is not on mathematical rigor, but in developing an ability to use relatively common statistical tests correctly.

1.4.1 Some fundamental statistical quantities

1.4.1.1 Measures of central tendencies 

These include mean, median and mode.

The sample mean of a set of values, xi, is given by
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This estimate of the true mean µ is unbiased. The sample mean, or average, is an unbiased estimate of the mean. The mean is the first moment about zero. The mean is to be distinguished from the median, which is the value in the center of the population (or the average of the two middle values, if the sample contains an even number of examples), and the mode, which is the most frequently occurring value.

1.4.1.2 Measures of variations

These include variance, standard deviation and higher moments.

The sample variance of a set of values is given by
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The division by N-1 instead of the expected N is to obtain an unbiased estimate of the variance. To see why this is so check any standard textbook on mathematical statistics, where you will find a fairly long derivation that I don’t want to reproduce here. The variance is the second moment about the mean. It is more efficient (because it can be done with one loop and round off error is reduced) to compute the variance using the following relation:
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Where, of course:
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The standard deviation

The standard deviation is the square root of the variance. We often denote it with the symbol σ, the sample standard deviation is s.

s =
[image: image9.wmf]2

s

                                                                                                                                  (1.4)

Higher moments

We can define an arbitrary moment about the mean as:
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So that m2 is the variance, m3 is the skewness, and m4 is the kurtosis. These can be nondimensionalized by defining
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Where σ is again the standard deviation, or the square root of the second moment about the mean.

The moment coefficient of skewness, a3, indicates the degree of asymmetry of the distribution about the mean. If a3 is positive then the distribution has a longer tail on the positive side of the mean, and vice versa. The coefficient of skewness for a Normal distribution is zero.

The moment coefficient of kurtosis, a4, indicates the degree to which the distribution is spread about the mean value. The Normal distribution is in the region called mesokurtic and has a coefficient of kurtosis of 3. Distributions with very flat distributions near the mean, with low coefficients of kurtosis, are called platykurtic (Greek platys, meaning broad or flat). Distributions that are strongly peaked near the mean have high coefficients of kurtosis and are called leptokurtic (Greek for leptos, meaning small or narrow). In many statistics packages the coefficient of kurtosis has the value for a normal distribution, 3, subtracted from it, so that platykurtic distributions have negative coefficients and vice versa.

Learning Activity 1.3. Given the following sample data: 1, 4, 6, 7, 10, 4, 7, 9, find the mean, median, mode, variance, standard deviation, skwness and kurtosis.

1.4.2. Probability concepts and laws

One view of probability is the frequency view. If you have some large number of opportunities for an event to occur, then the number of times that event actually occurs, divided by the number of opportunities for it to occur is the probability. The probability varies between zero and one. The frequentist view has a solid foundation in the Weak Law of Large Numbers which states that if you have random number between zero and one, the sum of this number divided by the sample size approaches the probability with arbitrary precision for large sample size. Another more subjective view attributed to Baye’s figures that in many cases one is unlikely to have a large sample with which to measure the frequency of occurrence, and so one must take a more liberal and subjective view. Bayesian inference is given that name for its frequent use of Baye’s Theorem, which it uses to take into account a priori information that may not be derivable from a frequentist point of view.
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Fig. 1 Illustrations of skewness and kurtosis of probability distributions

The probability of some event E happening is written as P(E). The probability of E not happening must be 1 - P(E). The probability that either or both of two events E1 and E2 will occur is called the union of the two probabilities and is given by,
P(E1 U E2 )= P(E1)+P(E2 ) -P(E1 ∩ E2 )                                                                                    (1.7)

where P(E1 ∩ E2 ) is the probability that both events will occur, and is called the intersection. It is the overlap between the two probabilities and must be subtracted from the sum. This is easily seen using a Venn diagram, as below. In this diagram the area in the rectangle represents the total probability of one, and the area inside the two event circles indicates the probability of the two events. The intersection between them gets counted twice when you add the two areas and so must be subtracted to calculate the union of the probabilities. If the two events are mutually exclusive, then no intersection occurs.

Another important concept is conditional probability. We write the probability that E2 will occur, given that E1 has occurred as the postulate,

P(E2 | E1) =
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Changing this conditional probability relationship around a little yields a formula for the probability that both events will occur, called the multiplicative law of probability

P(E1 ∩ E2 )= P(E2 | E1). P(E1)+P(E1 | E2 ). P(E2 )                                                                     (1.9)

If the two events are completely independent such that P(E1 | E2 ) = P(E1) , then we get,

P(E1 ∩ E2 ) = P(E1). P(E2 )                                                                                                      (1.10)

This is the definition of statistical independence.

For example, if the probability of getting heads on a coin flip is 0.5, and one coin flip is independent every other one, then the probability of getting heads (or tails) N times in a row is (0.5)N .

Baye’s theorem

Let Ei, i=1,2,3, … n be a set of n events, each with positive probability, that partition a set S in such a way that
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This means the events include all the possibilities in S and the events are mutually exclusive.

For any event B, also defined on S, with positive probability P(B) > 0, then,
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Baye’s theorem can be derived from the following definitions and postulates.

Define the conditional probability of an event E, given that an event B has occurred.

P(E | B) =
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, which can be rearranged as, P(E∩B) = P(E | B) . P(B) .

We also know that, P(B) =
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Learning Activity 1.4. Can you see why each of these statements must be true? Can you use them to derive Baye’s Theorem?

1.4.3. Probability distributions

The probability that a randomly selected value of a variable x falls between the limits a and b can be written:

P(a ≤x ≤b)= 
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This expression defines the probability density function f(x) in the continuous case.

Note that the probability that the variable x will assume some particular value, say c, is exactly zero. f(x) is not the probability that x will assume the value x1. To obtain a probability one must integrate the probability density function between distinct limits.

The probability density must have the following characteristics:

 1. f(x) ≥ 0 for all x within the domain of f
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The moments of the distribution can be obtained from the probability density using the following formula:
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where µ is the true mean, and the moments are taken about the mean.

The cumulative distribution function F(x) can be defined as the probability that a variable assumes a value less than x:
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It immediately follows that

P(a ≤x ≤b) = F(b)-F(a)

dF/dx = f (x)                                                                                                                            (1.19)
1.4.4. The normal distribution

The Normal distribution is one of the most important in geophysics. Most observables are distributed normally about their means, or can be transformed in such a way that they become normally distributed. It is important to verify in some way that your random variable is normally distributed before using Gaussian-Normal statistical tests, however. We can assume that we have a standardized random variable z derived from some unstandardized random variable x:
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Then, if z (and x) is normally distributed, the cumulative distribution function is:
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With the probability density function given by the part inside the integral, of course.

If we use the unstandardized random variable x, then the form of the probability density is:
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In this formula µ and σ are actually the mean and standard deviation. Of course, the probability density is only defined relative to the cumulative distribution, and this explains why the σ appears in the denominator of the constant expression multiplying the exponential immediately above. It arises when the transformation is made in the variable of integration.

The probability that a normally distributed variable falls within one standard deviation of its mean value is given by:
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and similarly for 2 and 3 standard deviations:
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Thus there is only a 4.55% probability that a normally distributed variable will fall more than 2 standard deviations away from its mean. This is the two-tailed probability.

The probability that a normal variable will exceed its mean by more than 2σ is only half of that, 2.275%.

1.4.5. Testing for significance using the normal distribution

As it turns out, many geophysical variables are approximately normally distributed. This means that we can use the theoretical normal probability distribution to calculate the probability that two means are different, etc. Unfortunately, to do this we need to know the true mean µ and the true standard deviation σ, a priori. The best that we are likely to have are the sample mean x and the sample standard deviation s based on some sample of finite size N. If N is large enough we can use these estimates to compute the z statistic.

Otherwise we need to use the Student t statistic, which is more appropriate for small samples. In geophysical applications we can usually assume that we are sampling from an infinite population.

For an infinite population the standard deviation of the sampling distribution of means is given by:
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Here σ is the standard deviation of the population and N is the number of data used to compute the sample mean. The standard variable used to compare a sample mean to the true mean is thus:
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This formula needs to be altered only slightly to provide a significance test for differences between means:
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Here the sample sizes for computing the two means and the two standard deviations are different. 
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 is the expected difference between the two means, which is often zero in practice.

Small sampling theory

When the sample size is smaller than about 30 we cannot use the z statistic, above, but must use the Student’s t distribution; or when comparing variances, the chi-squared distribution. Since the Student’s t distribution approaches the normal distribution for large N, there is no reason to use the normal distribution in preference to Student’s t.

The Student’s t distribution is derived in exact analogy with the z statistic:
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If we draw a sample of size N from a normally distributed population of mean µ, we find that t is distributed with the following probability density:
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Where υ = N – 1 is the number of degrees of freedom and fo(υ) is a constant that depends on υ and makes the area under the curve f(t) equal to unity.

Unlike the z distribution, the t distribution depends on the size of the sample. The tails of the distribution are longer for smaller degrees of freedom. For a large number of degrees of freedom the t distribution approaches the z or normal distribution. Note that, although we sometimes speak of the t distribution and contrast it with the normal distribution, the t distribution is merely the probability density you expect to get when you take a small sample from a normally distributed population. The Student’s t distribution is the most commonly used in meteorology, and perhaps in all of applied statistics.

Confidence intervals

Values of the t statistic and the z statistic for specified probability levels and degrees of freedom are given in tables. In such tables, t0.025 is the value of t for which only 0.025, 2.5%, of the values of t would be expected to be greater (right-hand tail). t-0.025 = -t0.025 is the value of t for which only 2.5% of the values of t obtained from a normally distributed sample would be expected to be less. Note that the t distribution is symmetric. The values of t are the integrals under the probability density function as shown below.

There is a 95% probability that any sampled t statistic falls in the interval
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From this we can deduce that the true mean µ is expected with 95% confidence to lie in the interval:
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In general, confidence limits for population means can be represented by
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Where tc is the critical value of the t statistic, which depends on the number of degrees of freedom and the statistical confidence level desired. Comparing this with the confidence limits derived using the z statistic, which is only appropriate for large samples where the standard deviation can be assumed known:
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we see that the small sample theory replaces the z statistic with the t statistic and the standard deviation by a modified sample standard deviation:
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Differences of means

Suppose two samples of size N1 and N2 are drawn from a normal population whose standard deviations are equal. Suppose the sample means are given by x1 and x2 and them sample standard deviations are s1 and s2. To test the null hypothesis Ho that the samples come from the same population (µ1=µ2 as well as σ1=σ2) use the t score given by:
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and v= 
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Chi-Squared distribution: Tests of variance

Sometimes we want to test whether sample variances are truly different. For this we can define the Chi-Squared Statistic. Define:
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Draw χ2   from a normal distribution with standard deviation σ. The samples are distributed according to:
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Note that the Chi-squared distribution is not symmetric, so that we write the 95% confidence limits as:
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Degrees of freedom

The number of degrees of freedom is the number of independent samples N minus the number of parameters in the statistic which must be estimated. For example in the t statistic,


[image: image45.wmf]s

N

N

s

N

s

x

N

s

x

t

1

ˆ

;

ˆ

1

-

=

-

=

-

-

=

m

m

                                                                                          (1.40)
we calculate the sample mean x and the sample standard deviation s from the data, but the true mean must be estimated, thus υ= N - 1. Similarly in the Chi-squared statistic,
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we know the sample variance s2 and the sample size N, but we must estimate the true variance so that v = N - 1. Some would argue, however, that we need the sample mean to estimate the sample variance, so that in fact υ = N - 2, but this is heresy. If it makes a significant difference, your sample is too small anyway.

F-statistic

Another statistic that we will find useful in testing power spectra is the F-statistic. If s12 and s2 2 are the variances of independent random samples of size N1 and N2, taken from two normal populations having the same variance, then
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is a value of a random variable having the F distribution with the parameters υ1 = N1 -1 and υ2 = N2 -1. This statistic will be very useful in testing the significance of peaks in frequency spectra. 

The two parameters are the degrees of freedom for the sample variance in the numerator, υ1, and in the denominator, υ2.
1.4.6. Hypothesis testing

In using statistical significance tests there are five basic steps which should be followed in order.

1. State the significance level

2. State the null hypothesis H0 and its alternative H1
3. State the statistic used

4. State the critical region

5. Evaluate the statistic and state the conclusion

Here, you need to state what level of uncertainty is acceptable before you compute any statistics. People usually choose 95% or 99% certainty. In the first case you are accepting a one in twenty chance of accepting the hypothesis wrongly -a type II error. Type I error - You reject the hypothesis and it is correct. Type II error you accept the hypothesis but it is wrong. If you compute the statistic and then state what significance level it passes (e.g. 80%), then you are a mush-headed scoundrel and should be ashamed.

Proper construction of the null hypothesis and its alternative is critical to the meaning of statistical significance testing. Careful logic must be employed to ensure that the null hypothesis is reasonable and that its rejection leads uniquely to its alternative.

Usually the null hypothesis is a rigorous statement of the conventional wisdom or a zero information conclusion, and its alternative is an interesting conclusion that follows directly and uniquely from the rejection of the null hypothesis. Usually the null hypothesis and its alternative are mutually exclusive. Examples follow.

H0: The means of two samples are equal

H1: The means of two samples are not equal

H0: The correlation coefficient is zero

H1: The correlation coefficient is not zero

H0: The variance is less than or equal to ten

H1: The variance exceeds ten 

1.4.6.1. Errors in hypothesis testing

Even though you have applied a test and the test gives a result, you can still be wrong, since you are making only a probabilistic statement. The following table illustrates the Type I: You reject the claim, but the true value is in the acceptance level, and Type II: You accept the claim, but the true value is outside the acceptance level.

	
	µ is in acceptance interval

(e.g. z > zcrit)
	µ not in acceptance interval

(e.g. z < zcrit)

	Accept Claim
	No Error
	Type II Error

	Reject Claim
	Type I Error
	No Error


Example 1.1. In a sample of 10 farmers the mean maize productivity is 42qt/ha and the standard deviation is 5. What are the 95% confidence limits on the true mean maize productivity?
1. Desired confidence level is 95%.

2. The null hypothesis is that the true mean is between 42 ± 
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P. The alternative is that it is outside this region.

3. We will use the t statistic.

4. The critical region is | t | < t.025, which for n = N - 1 = 9 is | t | < 2.26. Stated in terms of confidence limits on the mean we have:
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5. Putting in the numbers we get 38.23 < µ< 45.77. We have 95% certainty that the true mean lies between these values. This is the answer we wanted. If we had a guess about what the true mean was, we could say whether the data would allow us to reject this null hypothesis at the significance level stated.

1.5. Summary 

Econometrics is concerned with the tasks of developing and applying quantitative or statistical methods to the study and elucidation of economic principles. Econometrics combines economic theory with statistics to analyze and test economic relationships. Under this Topic we defined Econometrics as a social science that applies tools (economic theory, mathematics and statistical inference) to the analysis of economic phenomena. Econometrics consists of “the application of mathematical statistics to economic data to lend empirical support to the models constructed by mathematical economics.” It is a science which employs statistical methods to analyze data in order to: estimate economic relationships, evaluate government and business policies, test economic theories, and make predictions and forecasts. It has four basic ingredients: data, specification, estimation and inference.

Statistics play a major role in estimating econometric models. Statistical relationships deal with random variables that have probability distributions. Hence, review of basic statistical concepts that have applications in econometrics are important. The review focused on descriptive statistics (measures of central tendencies and variations) and inferential statistics which includes probability, estimation (point and interval) and hypothesis testing. 
Learning Activities

Exercises  1

You are expected to complete the exercises below within 2 weeks and submit to your facilitator by uploading on the learning management system.

1. What are the 95% confidence limits on the variance in the first example above?

2. What are the 95% confidence limits on the mean if you (wrongly) use the z statistic in the first example?

3. a. Define and discuss the importance of probability in a statistical inference

b. Discuss about the different methods of making inference based on data collected from a sample.

c. Describe how to run a hypothesis test for the mean where H0: ( = 45 and H1: ( > 45; i.e., list the basic quantities to be determined, and how to put them together, and what to compare, and how to conclude.

4. Suppose you want to analyze the impact of forage on milk productivity in Jijiga zone of Ethiopia. Suppose you collected information from a sample of 81 farmers and assuming normally distributed population having a variance of 100 and with mean 120 liters per month. Moreover, the sample mean yield is 135 liters per month and the critical value for a two sided and one-sided z-tests at 5% significant level are respectively 1.96 and 1.64.

a. State the null and alternative hypothesis for a two sided test.

b. Analyze whether forage has a significant impact on milk productivity at 5% significance level.

c. State the null and alternative hypothesis for a one sided test. Is forage statistically significant at 5% significance level?

5. Suppose you sampled 100 farmers from two districts A and B (50 from each) to compare if there is a significant difference in farm productivity among the farmers of the two districts. Upon testing these he found that district A had a mean yield of 15 qt/ha with a standard deviation of 5 whereas district B had an average yield of 20 qt/ha with a standard deviation of 6. Can it be concluded at 5% level of significance that the two districts differ significantly in farm productivity? 

6. A student takes a 20-question multiple-choice exam where every question has 5 choices. Some of the answers she knows from study, some she guesses. If the conditional probability that she knows the answer, given that she answered it correctly, is 0.93, for how many of the questions did she know the answer?

7. An earthquake forecaster forecasts 20 earthquakes. How many of these forecasts must be successes in order to pass a 95% confidence that the forecaster has nonzero skill? What percentage is this? Compare to the case of 200 forecasts given above.
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Topic 2: Simple Linear Regression 

Learning Objectives

By the end of this topic, students should be able to:
·  Determine the significance of the predictor variable in explaining variability in the dependent variable;

· Predict values of the dependent variable for given values of the explanatory variable; 

· Use linear regression methods to estimate empirical relationships;
· Critically evaluate simple econometric analyses.
Key Terms 
Simple linear regression model, regression parameters, regression line, residuals, principle of least squares, least squares estimates, least squares line, fitted values, predicted values, coefficient of determination, least squares estimators, distributions of least squares estimators, hypotheses on regression parameters, confidence intervals for regression.

Introduction 
Linear regression is probably the most widely used, and useful, statistical technique for solving economic problems. Linear regression models are extremely powerful, and have the power to empirically simplify out very complicated relationships between variables. In general, the technique is useful, among other applications, in helping explain observations of a dependent variable, usually denoted Y, with observed values of one or more independent variables, usually denoted by X1, X2, ...  A key feature of all regression models is the inclusion of the error term, which capture sources of error that are not captured by other variables.

This Topic presents simple linear regression models. That is, regression models with just one independent variable, and where the relationship between the dependent variable and the independent variable is linear (a straight line). Although these models are of a simple nature, they are important for various reasons. Firstly, they are very common. This is partly due to the fact that non-linear relationships often can be approximated by straight lines, over limited ranges. Secondly, in cases where a scatterplot of the data displays a non-linear relationship between the dependent variable and the independent variable, it is sometimes possible to transform the data into a new pair of variables with a linear relationship. That is, we can transform a simple non-linear regression model into a simple linear regression model, and analyze the data using linear models. Lastly, the simplicity of these models makes them useful in providing an overview of the general methodology. In Topic 3, we shall extend the results for simple linear regression models to the case of more than one explanatory variables. 

A formal definition of the simple linear regression model is given in Section 2.2. In Section 2.3, we discuss how to fit the model, and how to estimate the variation away from the line. Section 2.4 presents inference on simple linear regression models. 

2.1 Simple linear regression models
In most of the examples and exercises in Topic1, there was only one explanatory variable, and the relationship between this variable and the dependent variable was a straight-line with some random fluctuation around the line. 

Example 2.1.        Farm productivity and fertilizer use
This data is obtained from 15 farmers to analyze the relationship between farm productivity (Y) measured in qt/ha and fertilizer use (X) measured in Kg/ha. 

Table 2.1. Farm productivity and fertilizer use

	Farm productivity in qt/ha
	Fertilizer use in kg 

	28
	10

	19
	8

	30
	10

	50
	15

	35
	12

	40
	16

	22
	9

	32
	10

	34
	13

	44
	16

	60
	20

	75
	22

	45
	14

	38
	11

	40
	10


A scatterplot of the data is shown in Figure 2.1. 
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Figure 2.1: Farm productivity against fertilizer use

Learning Activity 2.1. From Figure 2.1, what can you say about the relationship between the two variables?
The relationship between the two variables could be described as a straight line, and some random factors affecting farm productivity. Thus, we can use the following linear specification as a model for analyzing the data, 
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This is an example of a simple linear regression model. 

In general, suppose we have a dependent variable Y and an independent variable X. Hence, the simple linear regression model for Y on X is given by: 
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                                                                                               (2.1)                 
where β0 and β1 are unknown parameters, and the 
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s are independent random variables with zero mean and constant variance for all. 

The parameters β0 and β1 are called regression parameters (or regression coefficients), and the line 
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is called the regression line or the linear predictor. Note that a general h(.) is called a regression curve. The regression parameters β0 and β1 are unknown, non-random parameters. They are the intercept and the slope, respectively, of the straight line relating Y to X. 

The name simple linear regression model refers to the fact that the mean value of the dependent: 
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is a linear function of the regression parameters β0 and β1. 

The terms 
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 in (2.1) are called random errors or random terms. The random error 
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is the term which accounts for the variation of the ith dependent variable Yi away from the linear predictor 
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The 
[image: image60.wmf]i

e

s are independent random variables with the same variance and zero mean. Hence, the dependent variables Yi are independent with means 
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For the above example, an interpretation of the regression parameters β0 and β1 is as follows: 

β0: The expected farm productivity for a hypothetical farmer with no fertilizer applied. 

β1:  The expected change in the farm productivity, when the fertilizer application is increased by one kg. Observe that the slope of the line is positive, implying that farm productivity increases with increasing fertilizer application. 

Learning Activity 2.2. Can you give an example of your own where an inverse relationship exists between dependent and independent variables?

Class Discussion 2.1: Assume you have data from 10 farmers on the area of cultivable land and farm productivity. Provide your views on how to estimate the effect of a unit change in the area of cultivable land on farm productivity.

2.2 Assumptions Underlying Simple Linear Regression

Regression, like most statistical techniques, has a set of underlying assumptions that are expected to be in place if we are to have confidence in estimating a model. Some of the assumptions are required to make an estimate, even if the only goal is to describe a set of data. Other assumptions are required if we want to make inference about a population from sample information. 
1. Y is measured as a continuous level variable – not a dichotomy or ordinal measurement

2. The independent variable can be continuous, dichotomies, or ordinal

2.2.1 Assumptions about the error term

We noted in Topic 2 that the error term in regression provides an estimate of the standard error of the model and helps in making inferences, including testing the regression coefficients. To properly use regression analysis there are a number of criteria about the error term in the model that we must be able to reasonably assume are true. If we cannot believe these assumptions are reasonable in our model, the results may be biased or no longer have minimum variance.

The following are some of the assumptions about the error term in the regression model.

1. The mean of the probability distribution of the error term is zero (E(εi) = 0)

This is true by design of our estimator of OLS, but it also reflects the notion that we don’t expect the error terms to be mostly positive or negative (over or underestimate the regression line), but centered around the regression line.

Assumptions about the error term in regression are very important for statistical inference - making statements from a sample to a larger population.

Learning Activity 2.3. Show that this assumption holds true for a simple linear regression with a constant even if E(εi) ≠ 0.
2. The error terms has constant variance (Var(εi)= σ2)

This implies that we assume a constant variance for Y across all the levels of the independent variable. This is called homoscedasticity and it enables us to pool information from all the data to make a single estimate of the variance. Data that does not show constant error variance is called heteroscedasticity and must be corrected by a data transformation or other methods. 

3. The error term is normally distributed (εi~N(0,σ2))

This assumption follows statistical theory of the sampling distribution of the regression coefficient and is a reasonable assumption as our sample size gets larger and larger. This enables us to make an inference from a sample to a population, much like we did for the mean.

4. The errors terms are independent of each other and with the independent variable in the model (Cov (εi, εj) =0 and Cov(Xi, εi) =0)

Correlated error terms sometimes occur in time series data and is known as auto-correlation while correlation of the error terms with the independent variable is called endogeneity. If there is correlation among the error terms or error terms with the independent variable it usually implies that our model is mis-specified. Another way to view this problem is that there is still pattern left to explain in the data by including a lagged variable in time series, or a nonlinear form in the case of correlation with an independent variable.

2.3 Fitting the Model

Given that a straight line might describe the relationship in the data well, the obvious question is now: which line fits the data best? 
In Figure 2.2 a line is added to a scatterplot for the data on farm productivity and fertilizer used. There could be many lines that can be fitted into this data set. However there is only one line that best fits this data and having the property that the sum of squared residuals is the minimum. 
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Figure 2.2. Line of best fit to a data on farm productivity and fertilizer use
The most common criterion for estimating the best fitting line to data is the principle of least squares. This criterion is described in Subsection 2.3.1. Subsection 2.3.2 involves a measure of the strength of the straight-line relationship. When we estimate the regression line, we efficiently estimate the two regression parameters β0 and β1. That leaves one remaining parameter in the model: the common variance σ2 of the dependent variables. We discuss how to estimate σ2 in Subsection 2.3.3. 

2.3.1 The principle of least squares

The principle of least squares is based on the residuals. For any line, the residuals are the deviations of the dependent variables Yi away from the line. Note that residuals always refer to a given line or curve. The residuals are usually denoted by 
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 to differentiate it from the random terms which are unobservable. The reason for this notation is that, if the line is the true regression line of the model, then the residuals are exactly the random errors
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 in (2.2). For a given line
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 is the difference between the ith observation Yi and the linear predictor 
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(2.3)

The observed values of 
[image: image70.wmf]i
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 are called observed residuals (or just residuals). The residuals are the vertical deviations of the observed values from the line of best fit. 

It is important to note here that, the better the line fits the data, the smaller the residuals will be. Hence, we can use the ‘sizes’ of the residuals as a measure of how well a proposed line fits the data. If we simply used the sum of the residuals, we would get a problem with large positive and large negative values cancelling out; this problem can be avoided by using the sum of the squared residuals instead. If this measure-the sum of squared residuals-is small, the line explains the variation in the data well; if it is large, the line explains the variation in the data poorly. The principle of least squares is to estimate the regression line by the line which minimizes the sum of squared residuals. Or, equivalently: estimate the regression parameters β0 and β1by the values which minimize the sum of squared residuals. 

Learning Activity 2.4. What is the main difference between error terms and residuals?
The sum of squared residuals, or, as it is usually called, the residual sum of squares, is denoted by RSS is given by:
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(2.4)

To minimize RSS with respect to β0 and β1 we differentiate (2.4), and get 
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Letting the derivatives equal to zero and re-arranging the terms, yields the following equations
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Solving the equations for β0 and β1 provides the least squares estimates 
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 denote the sample means of the dependent and explanatory variable, respectively. 

The estimated regression line is called the least squares line or the fitted regression line and is given by: 
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The values
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 are called the fitted values or the predicted values. The fitted value 
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is an estimate of the expected dependent for a given value 
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of the explanatory variable. The residuals corresponding to the fitted regression line, are called the fitted residuals, or simply the residuals. They are given by:

[image: image85.wmf].

,...,

1

ˆ

ˆ

ˆ

ˆ

1

0

n

i

x

y

y

y

i

i

i

i

i

=

-

-

=

-

=

b

b

e

                                                                                   (2.6)

The fitted residuals can be thought of as observations of the random errors 
[image: image86.wmf]i
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in the simple linear regression model (2.1). 

It is convenient to use the following shorthand notation for the sums involved in the expressions for the parameter estimates (all summations are for i = 1,.., n): 
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The sums 
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are called corrected sums of squares, and the sums
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are called corrected sums of cross products. The corresponding sums involving the random variables Yi rather than the observations 
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are denoted by upper-case letters:
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. In this notation, the least squares estimates of the regression parameters β0 and β1 of the slope and intercept of the regression line are given by:
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and 
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respectively. 

Note that the estimate of 
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For the data on farm productivity and fertilizer, the least squares estimates of the regression parameters are given by 
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So, the fitted least squares line has equation
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The least squares line is shown in Figure 2.4. The line appears to fit the data reasonably well. 
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	Figure 2.3: Farm productivity and fertilizer data; the least squares line


The least squares principle is the traditional and most common method for estimating the regression parameters. But there exists other estimating criteria: e.g. estimating the parameters by the values that minimize the sum of absolute values of the residuals, or by the values that minimize the sum of orthogonal distances between the observed values and the fitted line. The principle of least squares has various advantages to the other methods. For example, it can be shown that, if the dependent variables are normally distributed (which is often the case), the least squares estimates of the regression parameters are exactly the maximum likelihood estimates of the parameters. 

2.3.2 Coefficient of determination

In the previous subsection we used the principle of least squares to fit the ‘best’ straight line to data. But how well does the least squares line explain the variation in the data? In this subsection we describe a measure for roughly assessing how well a fitted line describes the variation in data: the coefficient of determination. 

The coefficient of determination compares the amount of variation in the data away from the fitted line with the total amount of variation in the data. The argument is as follows: if we did not have the linear model we would have to use the ‘naïve’ model
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A measure of the strength of the linear relationship between 
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and
[image: image112.wmf]X

is the coefficient of determination R2: it is the proportional reduction in variation obtained by using the least squares line instead of the naïve model. That is, the reduction in variation away from the model

SYY - RSS as a proportion of the total variation Syy: 
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The larger the value of
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, the greater the reduction from 
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Note that the square root of r2 is exactly the estimate from Topic 1 of the Pearson correlation coefficient, ρ, between 
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 is regarded as a random variable: 
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The value of R2 will always lie between 0 and 1 (or, in percentage, between 0% and 100%). It is equal to 1 if
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 and RSS = 0, that is, if all the data points lie precisely on the fitted straight line (i.e. when there is a ‘perfect’ relationship between Y and 
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 ). If the coefficient of determination is close to 1, it is an indication that the data points lie close to the least squares line. The value of R2 is zero if RSS = Syy, that is, the fitted straight-line model offers no more information about the value of Y than the naïve model does. 

It is tempting to use R2 as a measure of whether a model is good or not. This is not appropriate. 

Class Discussion 2.2. Discuss why R2 is not an appropriate measure of fit of the model. 

The relevant summary statistics for the data on farm productivity and fertilizer application are: 
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The coefficient of determination is given by 
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Since the coefficient of determination is very high, the model seems to describe the variation in the data very well. 

2.3.3 Estimating the variance

In Subsection 2.3.1, we found that the principle of least squares can provide estimates of the regression parameters in a simple linear regression model. But, in order to fit the model we also need an estimate for the common variance 
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 it would be natural to estimate it by the sample variance of the fitted residuals (2.6). That is, an estimate would be: 
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The denominator in (2.9) is the residual degrees of freedom (df), that is 

   df = number of observations - number of estimated parameters. 

In particular, for simple linear regression models, we have 
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observations and we have estimated the two regression parameters β0 and β1, so the residual df is n-2. 

The relevant summary statistics for the data on farm productivity and fertilizer application are: 
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An unbiased estimate of the common variance
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 is given by 
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2.4 Inference in Simple Linear Regression
In Section 2.3 we produced an estimate of the straight line that describes the data-variation best. However, since the estimated line is based on the particular sample of data, 
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 i = 1,…, n we have observed, we would almost certainly get a different line if we took a new sample of data and estimated the line on the basis of the new sample. For example, if we measured farm productivity and fertilizer application of farmers in Haramaya district the one in Example 2.1, we would invariably get different measurements, and therefore a different least squares line. In other words: the least squares line is an observation of a random line which varies from one experiment to the next. Similarly, the least squares estimates 
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 of the intercept and slope, respectively, of the least squares line, are both observations of random variables. These random variables are called the least squares estimators. An estimate is non-random and is an observation of an estimator, which is a random variable. The least squares estimators are given by: 
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where
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 being the least squares estimators. Note that the randomness in the estimators is due to the dependent variables only, since the explanatory variables are non-random. In particular, it can be seen from (2.10) and (2.11) that
[image: image166.wmf]1

0

ˆ

ˆ

b

b

and

are linear combinations of the dependent variables. 

It can be shown that the least squares estimators are unbiased, that is, that they have the ‘correct’ mean values:
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Also, the estimator S2 is an unbiased estimator of the common variance σ2, that is 
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The variances of the estimators
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 can be found from standard results on variances (we shall not do it here). The variances are given by
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Note that both variances decrease when the sample size n increases. Also, the variances decrease if
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 is increased. That is, if the x-values are widely dispersed. In some studies, it is possible to design the experiment such that the value of 
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 is high, and hence the variances of the estimators are small. It is desirable to have small variances, as it improves the precision of results drawn from the analysis. 

In order to make inferences about the model, such as testing hypotheses and producing confidence intervals for the regression parameters, we need to make some assumption on the distribution of the random variables
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Topic 4 is concerned with various methods for checking the assumptions of regression models. In this section, we shall simply assume the following about the dependent variables: the
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2.4.1 Inference on the regression parameters

To test hypotheses and construct confidence intervals for the regression parameters β0 and β1, we need the distributions of the parameter estimators 
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. Recall from (2.10) and (2.11) that the least squares estimators 
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are linear combinations of the dependent variables
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are both normally distributed. In (2.13)-(2.16), we found the mean values and variances of the estimators. Putting everything together, we get that 
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It can be shown that the distribution of the estimator S2 of the common variance σ2 is given by
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denotes a chi-square distribution with n-2 degrees of freedom. Moreover, it can be shown that the estimator S2 is independent of the estimators 
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We can use these distributional results to test hypotheses on the regression parameters. Since both 
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 have normal distributions with variances depending on the unknown quantity σ2, we can apply standard results for normal random variables with unknown variances. Thus, in order to test 
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where 
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It can be shown that both test statistics
[image: image198.wmf])

(

0

ˆ

y

t

b

 and 
[image: image199.wmf])

(

1

ˆ

y

t

b

have t-distributions with n-2 degrees of freedom. 

The test statistics in (2.17) can be used for testing the parameter 
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(i=0,1) equal to any value
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. However, for the slope parameter β1, one value is particularly important: if we can test β1 equal to zero, the simple linear regression model simplifies to: 
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It is common-for instance in computer output-to present the estimates and standard errors of the least squares estimators in a table like the following. 

Table 2.2. Structure of software results for a regression

	Parameter
	Estimate
	Standard error
	t-statistic
	p-value
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The column ‘t-statistic’ contains the t-test statistic (2.17) for testing the hypotheses 
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respectively. If you wish to test a parameter equal to a different value, it is easy to produce the appropriate test statistic (2.17) from the table. The column ‘p –value’ contains the p-values corresponding to the t-test statistic in the same row. 

For the data on farm productivity and fertilizer application, the table is given by

Table 2.3. OLS result on farm productivity and fertilizer application

	Parameter
	Estimate
	Standard error
	t-statistic
	p-value
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	-3.278
	4.581
	-0.68
	0.000
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	3.271
	0.355
	9.21
	0.511


Not surprisingly, neither parameter can be tested equal to zero. If, for some reason, we wished to test whether the slope parameter was equal to 1.58, say, the test statistic would be 
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Since n = 15 in this example, the test statistic has a t(13)-distribution. The t-value for this test is 2.16, thus, on the basis of these data we reject the hypothesis that the slope parameter is 1.58, at the 5% significance level.

A second practical use of the table is to provide confidence intervals for the regression parameters. The 1–α confidence interval for β0 and β1 are given by, respectively,
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In order to construct the confidence intervals, all that is needed is the table and
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For the data on farm productivity and fertilizer application, the 95% confidence intervals for the regression parameters can be obtained from the table for these data and the 0.975-quantile of a t(13)-distribution:t0.975(13) = 2.16. The confidence intervals for β0 and β1 are, respectively, 
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Learning Activity 2.5. Consider data given in Table 2.2 on two continuous variables X and Y. Test whether the explanatory variable X significantly affects the dependent variable Y.

Table 2.4. Data on two variables X and Y from five samples

	No
	X
	Y

	1
	1
	2

	2
	2
	5

	3
	3
	4

	4
	0
	0

	5
	4
	4


2.5 Summary 
In this topic, the simple linear regression model has been discussed. We have described a method, based on the principle of least squares, for fitting simple linear regression models to data. The principle of least squares says to estimate the regression line by the line which minimizes the sum of the squared deviations of the observed data away from the line. The intercept and slope of the fitted line are estimates of the regression parameters β0 and β1, respectively. Further, an unbiased estimate of the common variance has been given. Under the assumption of normality of the dependent variable, we have tested hypotheses and constructed confidence intervals for the regression parameters. 

Learning Activities

Exercise2

You are expected to complete the exercises below within a week and submit to your facilitator by uploading on the learning management system.

1. Derive the variance of the OLS estimator for an intercept (
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) of a simple linear regression. 

2. (a)Define z and t-distribution. What is their difference?

 (b) Show that the OLS estimators follow a t-distribution with n-2 degrees of freedom.

  (c) Suppose you estimate the linear model 
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 sample of 20 farmers using OLS and obtain
[image: image224.wmf]54

.

2

ˆ

1

=

b

and 
[image: image225.wmf]14

.

1

)

ˆ

(

1

=

b

se

. What is the t-value? Does x significantly affect y at 95% confidence level? (Critical t-value at 18 df = 2. 101).

3. A researcher wants to find out if there is any relationship between education and farm productivity. He took a random sample of 6 maize farmers. Their education level and maize productivity measured in qt/ha are given below. 

Table 2.3. Maize productivity and education

	Maize productivity     
	40
	30
	23
	40
	45
	20

	Education
	4
	2
	6
	5
	8
	0


 a. Determine the OLS regression line

 b. Determine the coefficient of determination (R2). Interpret it. 

c. Test at 95% confidence level whether education has a significant effect on farm productivity

4. Using data on the file “data on farm productivity” to estimate the effect of extension contact on farm productivity using STATA. 

a. What are the intercept term and the coefficient of extension contact?

b. What is the equation of the OLS line?

c. What is the coefficient of determination? How do you interpret it?

d. Do you think that this coefficient will be changed if we include other variables in the model? Why? 

 5.A researcher is using data from a sample of 30 farmers to investigate the relationship between farm productivity of maize yi (measured in quintals per hectare) and expenditure on fertilizer xi (measured in hundreds of Birr per year). Preliminary analysis of the sample data produces the following sample information: 
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for i = 1, ..., N. Use the above sample information to answer all the following questions. 
 (a)   Compute the OLS estimates
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(b)   Interpret
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(c)   Calculate Var (
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(d)  Calculate 
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(e) Compute R2 (the coefficient of determination) and interpret it. 

(f) Does X affects Y significantly at 5% level of significance? (tcrt = 2.048)
6. Consider a simple regression model with a single regressor, fitted through the origin: 
yi =(xi +(i  ; i = 1, 2, 3, (., n. 
Consider the following estimator for (:
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a) Is this estimator a ‘linear estimator’? 

b) Prove that this estimator is unbiased. 

c) Derive the variance of
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e) What is the value of X '
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7. Suppose  that  all  of  the  conditions  for  the  Gauss-Markov  Theorem  are  satisfied.  Let b denote the usual OLS estimator of (.  Is it true that 
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Topic 3: Multiple Linear Regression

Learning Objectives

By the end of this topic, students should be able to:
· Explain how the regression model changes with the inclusion of many independent variables, including how to interpret the coefficients;

· State the OLS assumptions for multiple linear regression;

· Run regression using STATA with many independent variables; and

· Interpret the results of multiple linear regression for dummy and continuous independent variables.
Key Terms 

Multiple linear regression model, regression parameters, matrix notation, fitted values, predicted values, residual, residual sum of squares, least squares line, least squares estimates, coefficient of multiple determination, unbiased variance estimate.

Introduction 

The general idea of a simple linear regression model is that the dependent variable
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 is a straight-line function of a single explanatory variable
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 . In this Topic, we extend the concept of simple linear regression models to multiple linear regression models by considering the dependent variable to be a function of 
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where the random errors 
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 i = 1, …,n are independently normally distributed random variables with zero mean and constant variance
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is a linear function of the regression parameters
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It is common to assume normality in the definition of multiple linear regression models. In situations where the normality assumption is not satisfied, one might use a generalized linear model instead. 

Example 3.1:        Wheat yield
Table 3.1 contains data on wheat yield, fertilizer applied and area used for five farmers. 

	Table 3.1: Data on wheat yield

	Yield (kg)

Fertilizer(kg)

Area ( m2)
(Y)
(X1)
(X2)
745

36

66

895

37

68

442

47

64

440

32

53

1598

1

101




Suppose it is thought that the yield obtained depends primarily on the fertilizer applied and farm area. A possible model for the data might be the linear regression model: 
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i = 1, …,5
where the random errors 
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 are independent, normally distributed random variables with zero mean and constant variance. 

Example 3.2: Maize productivity 

These data refer to a study on how farm productivity is related to a number of explanatory variables. In the exercises to Topic 2, you have fitted a simple linear regression model to farm productivity, using extension contact as an explanatory variable. The model provided a reasonably good fit to the relationship between farm productivity and extension contact, but we may be able to refine the model by incorporating three more explanatory variables in the model: the age of the farmer, family size, and farm size. It seems plausible that (some of) these variables affect farm productivity. Table 3.2 shows some of the data on farm productivity, the age of the farmer, farm size, extension contact and family size with indicated units of measurement. 

	

	


Table 3.2: Maize farm productivity data

	Productivity
	Age
	Farm size
	Extension contact
	Family size

	Qt/ha
	Years
	Hectare
	Number/year
	Number

	(Y)
	(X1)
	(X2)
	(X3)
	(X4)

	56
	23
	3
	3
	4

	59
	26
	3.5
	2
	2

	43
	34
	2
	4
	5
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	60
	32
	1
	6
	2


Figure 3.1 shows a scatterplot of farm productivity against each of the four explanatory variables. An outlying point has been removed from the original dataset. 
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	Figure 3.1: Farm productivity against explanatory variables


Learning Activity 3.1.What can you guess about the relationships between the dependent and independent variable from Figure 3.1?

The scatter plots suggest that farm productivity depends linearly of extension contact and family size. For the two remaining variables, the scatter plots are less convincing; however, there is some (weak) indication of straight-line relationships. The linear regression model relating farm productivity to the four explanatory variables is given by: 
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where the random errors 
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are independent and normally distributed with zero mean and constant variance. 

3.1 Assumptions Underlying Multiple Regression

Regression, like most statistical techniques, has a set of underlying assumptions that are expected to be in place if we are to have confidence in estimating a model. Some of the assumptions are required to make an estimate, even if the only goal is to describe a set of data. Other assumptions are required if we want to make inference about a population from sample information. The assumptions underlying OLS can be generally categorized into two: Requirements of regression and assumptions about the error term.

3.1.1 Requirements of regression

Regression using OLS requires the following:

1. Y is measured as a continuous level variable – not a dichotomy or ordinal measurement

2. The independent variables can be continuous, dichotomies, or ordinal

3. The independent variables are not highly correlated with each other (No multicollinearity among explanatory variables)

4. The number of independent variables is 1 less than the sample size, n (preferably n is far greater than the number of independent variables) (Identifiability)

5. The number of observations for each variable should be same – any missing values for any variable in the regression removes that case from the analysis.

3.1.2 Assumptions about the error term

We noted in Topic 2 that the error term in regression provides an estimate of the standard error of the model and helps us in making inferences, including testing the regression coefficients. To properly use regression analysis there are a number of criteria about the error term in the model that we must be able to reasonably assume are true. If we cannot believe these assumptions are reasonable in our model, the results may be biased or no longer have minimum variance.

The following are some of the assumptions about the error term in the regression model.

1. The mean of the probability distribution of the error term is zero (E(εi) = 0)

This is true by design of our estimator of OLS, but it also reflects the notion that we don’t expect the error terms to be mostly positive or negative (over or underestimate the regression line), but centered around the regression line.

Assumptions about the error term in regression are very important for statistical inference - making statements from a sample to a larger population.

2. The probability distribution of error has constant variance (Var(εi)= σ2)

This implies that we assume a constant variance for Y across all the levels of the independent variables. This is called homoscedasticity and it enables us to pool information from all the data to make a single estimate of the variance. Data that does not show constant error variance is called heteroscedasticity and must be corrected by a data transformation or other methods. 

3. The probability distribution of the error term is distributed as a normal distribution (εi~N(0,σ2))

This assumption follows statistical theory of the sampling distribution of the regression coefficient and is a reasonable assumption as our sample size gets larger and larger. This enables us to make an inference from a sample to a population, much like we did for the mean.

4. The errors terms are independent of each other and with the independent variables in the model (Cov (εi, εj) =0 and Cov(Xi, εi) =0)

This means the error terms are uncorrelated with each other or with any of the independent variables in the model. Correlated error terms sometimes occur in time series data and is known as auto-correlation. If there is correlation among the error terms of with error terms and the independent variables it usually implies that our model is mis-specified. Another way to view this problem is that there is still pattern left to explain in the data by including a lagged variable in time series, or a nonlinear form in the case of correlation with an independent variable.

3.2 Matrix Notation
Statistical results for multiple linear regression models, such as parameter estimates, test statistics, etc., quickly become complex and tedious to write out-in particular when the number of explanatory variables is more than just two or three. A very useful way to simplify the complex expressions is by introducing matrix notation. We shall introduce matrix notation through the following example. 

Example 3.1 (continued) Wheat yield 

Writing out the five equations corresponding to the five observations in Table 3.1 in the example on yield, fertilizer and farm area, we get: 
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                                (3.2)
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In order to express these equations more concisely, we introduce the following notation. Let 
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y

denote the ith observed response variable and let the vector y be the column vector containing the 
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s, that is: 
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Further, let
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                                                                             (3.4)

Note that the matrix  
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 is referred to as the design matrix (or model specification matrix) because it ‘designs’ (or specifies) the exact form of the model: by changing 
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 we change the model into a new model. 

We can express the five equations in (3.2) in matrix form as: 
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where Y and X are given in (3.3) and (3.4), respectively, and where β is the column vector of regression parameters, and ε is the column vector containing the random errors ε1,…, ε5 , that is, 
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For example, the first equation in (3.2) is given by
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Similarly, the second equation in (3.2) is given by
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for i = 1,…,5. The corresponding multiple linear regression model for the unobserved response variables Y1,…, Y5 can be written, in matrix form, as 
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Recall that in definition (3.1), the multiple linear regression model assumes the form
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where 
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 are independent normal random variables with zero mean and constant variance. Following the procedure in Example 3.1, we can write out the n equations, obtaining the equation system: 
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From this, we can construct the n-dimensional vector
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, containing the response variables, and the 
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Further, let 
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denote the vector of regression parameters, and let 
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denote the vector of random errors, that is, 
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 , that is, it is an n-dimensional column vector. Similarly to Example 3.1, we can express the system of equations (3.5) in matrix form as: 
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where the random errors
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The fitted values are estimates of the expected response for given values of the explanatory variables
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Example 3.2 (continued) Farm productivity 

In matrix form, the multiple linear regression model for the ice cream data is given by 
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where the random errors                           in 
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are independent normally distributed random variables with zero mean and constant variance
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The first column in 
[image: image334.wmf]X

relates to the intercept β0, and the last four columns correspond to the age, farm size, extension contact, and family size, respectively. 

3.3 Fitting the Model
This section is concerned with fitting multiple linear regression models. In order to fit the ‘best’ regression line, we shall use the principle of least squares-the same principle we used in Topic 2, when fitting simple linear regression models. In Subsection 3.3.1, we discuss how the principle of least squares apply to the setting of multiple linear regression models. The resulting parameter estimates are presented in matrix notation. Subsection 3.3.2 provides a measure of the strength of the straight-line relationship, and in Subsection 3.3.3 an unbiased estimate of the common variance 
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3.3.1 The least squares line

As in the simple case, we use the principle of least squares to find the ‘best fitting’ model. According to this principle, the best fitting model is the one that minimizes the sum of squared residuals, where the residuals are the deviations between the observed response variables and the values predicted by the fitted model. As in the simple case: the smaller the residuals, the closer the fit. Note that the residuals 
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It follows that the residual sum of squares, 
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, is given by 
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We are interested in the values
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(Note that we are following exactly the same procedure as in the simple linear regression case.) Putting the derivatives equal to zero and re-arranging the terms, yields the following system of 
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These equations must be solved simultaneously for
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You can see that the ideas behind fitting multiple linear regression models is, in concept, a straightforward extension of the ideas developed in the context of simple linear regression. 

Example 3.1 (continued) wheat yield 

For the data on yield (
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), fertilizer (
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) and farm area (
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) of five farmers in Haramaya district of Ethiopia, we need to calculate the following sums, in order to obtain the equation system (3.7). We find that: 
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Substituting these results into the equation system (3.7), we get the following equations 
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                                (3.2)
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A computer will solve this system of equations, providing the following least squares estimates: 
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Thus, the least squares line for these data is given by: 
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In order to give explicit formulae for the least squares estimates of the regression parameters, it is convenient to switch to matrix notation. Without matrix notation, the formulae very quickly become unmanageable when the number of explanatory variables increases. Recall that the multiple linear regression model (3.6) is given in matrix form by 
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and where the random errors                   in 
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are independent normally distributed random variables with zero mean and constant variance
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where Y is the vector of observed response variables, and where the superscripts T and -1 denote transposed and inverse matrices, respectively. 
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The inverse of an 
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where 
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then the inverse matrix 
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is given by 


[image: image399.wmf]÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

-

nn

a

a

a

a

a

a

a

a

a

a

n

n

n

n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

1

2

22

21

1

12

11

1


where the elements 
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 . Note that, in this course, it is not necessary to know in detail how to invert a matrix-we shall always use a computer. 

Example 3.1 (continued). Wheat yield 

For the data on yield, fertilizer and farm area of five farmers, we have from earlier that 
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It can be shown that the vector 
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containing the least squares estimates of 
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where we have computed the matrix multiplications on a computer. Note that the estimates are the same as the ones that we obtained earlier. 


Example 3.2 (continued). Farm productivity 
For the maize productivity data, the observed response variable Y and the design matrix X are given by: 
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where the last four columns of X correspond to age, farm size, extension contact, and family size, respectively. The least squares estimates 
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are given by: 
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The least squares line, describing how maize farm productivity (
[image: image412.wmf]Y

) is related to age (
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X

), farm size (
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X

), (
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X

), family size and extension contact (
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) is given by: 
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Recall that, in an exercise for Topic 2, you fitted a simple linear regression model to the farm productivity regarded as a function of the extension contact only. If we fit the simple model (with extension contact as the only explanatory variable) on the data when the outlier has been removed, the least squares estimates are
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 (corresponding to the intercept and age, respectively). You can see that these estimates change considerably when the three extra explanatory variables are included in the model. In general, including more explanatory variables in the model affects the least squares estimates. This is because the least squares estimators are not independent. The estimates are only left unchanged if the matrix
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 is diagonal-in which case the least squares estimators are independent. 

Example 3.4.    Simple linear regression 
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In the special case when  k = 1 that is, when there is just one explanatory variable, the parameter estimates in formula (3.8) of the multiple linear regression model reduce to the parameter estimates of the simple linear regression. When k = 1, the vector of observed response variables Y and the design matrix X are given by, respectively: 

  


It can be shown that the vector of least squares estimates 
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where
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Thus, the least squares estimates of the two regression parameters are given by, respectively 
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which are exactly the least squares estimates that were derived in Topic 2. 

The multiple linear regression model may also be fitted using other statistical methods, for example, the method of maximum likelihood. It can be shown that the least squares estimates
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are maximum likelihood estimates. 

3.3.2 Coefficient of multiple determination
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Having fitted a simple linear regression model to a set of data in Topic 2, we would use the coefficient of determination to measure how closely the fitted model described the variation in the data. The definition of this measure easily generalizes to the situation of multiple linear regression. Recall that the coefficient of determination compares the amount of variation in the data away from the fitted model with the total amount of variation in the data. Since the observed residuals
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 denote the deviances between the observed dataYi, and the values fitted by the model                                                      it is natural to use the observed residuals, or the residual sum of squares
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, to measure the variation away from the fitted model. In the multiple linear regression case, the residual sum of squares, 
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Following the line of arguments from the simple case, a measure of the strength of the straight-line relationship between Y and X is the proportional reduction in variation obtained by using the least fitted model instead of the naïve model:
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. That is, as in the simple case, the variation explained by the model 
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The number 
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is an estimate of the coefficient of multiple determination: 
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As in the simple case 
[image: image440.wmf]2

R

will always lie between zero and one: if it is close to 1, it is an indication that the data points lie close to the fitted model; if it is close to zero, it is an indication that the model hardly provides any more information about the variation in the data than the naïve model does. 

The coefficient of multiple determination is a measure of how well a linear model describes the variation in the data compared to the naïve model; it is not a measure of whether or not a linear model is appropriate for the data. (A non-linear model might be more appropriate.) Methods for assessing the appropriateness of the assumption of linearity will be discussed in Topic 4. 

Example 3.1 (continued). Wheat yield 

The coefficient of multiple determination for the data on yield, fertilizer and farm area of farmers is given by: 

r2 = 0.944 = 94.4%

The multiple linear regression model relating the yield of five farmers of Haramaya to fertilizer and farm size seems to explain a large amount of the variation in the data. One should be careful, though, not over-interpreting the model: there are very few data points! 

Example 3.2 (continued). Farm productivity 

For the farm productivity data, r2 = 0.916.That is, the multiple linear regression model using age, farm size, extension contact and family size as explanatory variables explains 91.6% of the variation in maize farm productivity. 

3.3.3 Estimating the variance


Estimating the common variance 
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s

in the multiple linear regression model (3.6) is done in much the same way as estimating the common variance in a simple linear regression model. Recall from Topic 2, that we used the residual sum of squares, RSS, divided by the degrees of freedom in the model, 
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, as an unbiased estimate of the common variance in the simple model. For a multiple linear regression model, the RSS is given in (3.9), and the degrees of freedom are given by: 

df = number of observations - number of estimated parameters.
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Thus, an unbiased estimate of the variance 
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Example 3.1 (continued) Wheat yield 

An unbiased estimate of the common variance 
[image: image446.wmf]2

s

for the data on maize yield is given by: 


s2 = 25344.

Example 3.2 (continued) Farm productivity 

An unbiased estimate of the common variance 
[image: image447.wmf]2

s

for the data on farm productivity is given by: 

s2 =0.0624

Learning Activity 3.2. Given the following data on a dependent variable Y and two explanatory variables X1 and X2 answer the following.

Table 3.3. Data on Y, X1 and X2
	Y
	X1
	X2

	2
	2
	0

	1
	2
	2

	4
	7
	1

	2
	1
	2

	1
	3
	0


a. Calculate the OLS estimates

b. Make inference about the significance of X1 and X2

3.4. Summary 
A multiple linear regression model generalizes the simple linear regression model by allowing the response variable to depend on more than one explanatory variable. In order to avoid complex expressions with lots of indices, matrix notation has been introduced. Using this notation, it is possible to present most results neatly. As in the case of simple linear regression models, we used the principle of least squares to fit the regression line. According to the principle of least squares the ‘best fitting’ line is the line which minimizes the deviations of the observed data away from the line. This line is called the least squares line. The regression parameters for the least squares line, the least squares estimates, are estimates of the unknown regression parameters in the model. The coefficient of multiple determination is a measure of how well the fitted line describes the variation in the data. Finally, an unbiased estimate of the common variance has been given. 

Learning Activities

Exercise 3

You are expected to complete the exercises below within one week and submit to your facilitator by uploading on the learning management system.

1. Consider the following estimated regression model where Y is farm productivity, X1 is the number of hours worked per week and X2 is a dummy variable for extension access. The total number of observations equals 25, R2 = 0.5, and standard errors are in parentheses. Perform all tests at the 5% significance level.

Y = 45.0 + 1.5 X1 + 10.0 X2 + e

      (45.0)  (0.5)       (20.0)

a. Discuss the interpretation and magnitudes of the estimated coefficients on X1 and X2.

b. Perform a t test for the hypotheses that hours worked and extension access have positive impacts on farm productivity.

c. Perform a t test for the hypothesis that each additional hour worked per week will improve farm productivity by one unit.

d. Perform an F test for the hypothesis that hours worked and extension access do not jointly explain farm productivity.

2. For students at Haramaya University, the relationship between Y = college GPA (with range 0-4.0) and X1 = high school GPA (range 0-4.0) and X2 = Preparatory class score (range 0-400) satisfies E(Y) = 0.20 + 0.50X1 + 0.002X2.

a) Find the mean college GPA for students having (i) high school GPA = 4.0 and Preparatory class score = 400, (ii) X1 = 3.0 and X2 = 300.

b) Show that the relationship between Y and X1 for those students with X2 = 250 is E(Y) =

1.2 + 0.5X1.

c) Show that when X2 = 300, E(Y) = 1.4 + 0.5X1. Thus, increasing X2 by 100 shifts the line relating Y to X1 upward by 100β2 = 0.2 units.

d) Show that setting X1 at a variety of values yields a collection of parallel lines, each having slope 0.002, relating the mean of Y to X2.

3. Suppose the estimation of the model  
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 from a sample of 104 observations using OLS yields:
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a.   Which of the explanatory variables has a statistically significant impact on Y based on a t-test criterion.  Show how you arrive at your conclusions. 

b.   Test the hypothesis that (2 = (3. 

c.   Construct and interpret a 95% confidence interval for (2 + (3. 

d.   With the information provided, is it possible to test the hypothesis that Ho:  (1 = (2 = (3 = 0?  Explain.  

Further Reading Materials

Gujarati, D. N., 2005. Basic Econometrics. McGraw Hill, Fourth edition. 

Maddala, G. S., 2001. Introduction to Econometrics. Third Edition, John Wiley. 
Wooldridge, J.M., 2000. Introductory Econometrics: A Modern Approach.

Topic 4 Other Estimation Methods 

Learning Objectives

By the end of this topic, students should be able to:
·  Identify cases in which the OLS assumptions fail;

· Describe which estimations methods to use when each OLS assumptions failed; 
· Recognize the weaknesses and strengths of each method;
· Evaluate the effects of departures from classical statistical assumptions on linear regression estimates; 
· Critically evaluate each econometric analyses.
Key Terms

Endogeneity, IV, 2SLS, Hetroscedasticty, Autocorrelation, GLS, MLH and MOM.

Introduction 

Before we go into discussing other estimation methods we will revise the cases in which OLS fails.

Let us consider the general linear model:
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 or in matrix form y = Xβ + ε
An unbiased estimator of the parameter vector β is an estimator that produces estimates that are, on average, equal β, the true parameter. The assumptions needed to ensure unbiasedness of the Ordinary Least Squares (OLS) estimator are:

1. E[ε] = 0; error term has zero mean

2. E[ε | X] = 0 or E[X'ε] = 0 ; error term is uncorrelated with the regressors. This implies

Cov[ε,X] = 0

For efficiency and unbiased estimates of the standard errors we also need

3. E[εε′] =σ2I ; the error term has constant variance (no heteroscedasticity) and error terms are uncorrelated with each other.

For ‘identification’ – i.e. a unique and well defined parameter vector as a solution to OLS:

4. X is an n x k matrix with full rank (no multicollinearity); X is also commonly treated as ‘non-stochastic’. This means that it is a matrix of constants decided by the researcher in advance of the experiment, rather than the outcome of some random process. This might make sense when deciding on doses of a drug to prescribe to treatment groups in a clinical trial, but is less useful in observational social science data. It is not, as it turns out, an important assumption that X is non-stochastic, but it simplifies proofs.

And for statistical inference it is common to assume

5. ε ~ N [0,σ2I ] ; This is necessary in small samples to ensure that the parameter estimates follow a normal sampling distribution: 
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Unbiasedness is property of an estimator in finite samples. Sometimes we make do with a weaker condition – that an estimator is consistent. That is, it provides estimates that become very close to the ‘true’ parameters as the sample becomes very large. Consistency requires ‘asymptotic’ (n → ∞) equivalents to the assumptions listed above. Assumption 2, for example, becomes 2A. plim 1/n X′ε = 0. This says that 1/n X′ε ‘converges in probability’ to zero, meaning, roughly, that the average value of X′ε is zero as n tends to infinity.

Asumption 2 and 2A are critical to unbiasedness and consistency of the OLS estimator. It is the assumption that is violated when there are omitted explanatory variables (‘confounding factors’), when there’s a problem of reverse causality or simultaneity (y affects x), and when there’s measurement error in the regressors. It is easy to show why it is needed. The OLS estimator is
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Unbiasedness means that 
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 which requires that E[X′ε]=0
Assumption 3 ensures that OLS is the most efficient linear estimator, and implies that the variance of the sampling distribution of 
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The variance of the error term, σε2, is estimated by calculating the regression residuals
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The n-k-1 in the denominator is the model ‘degrees of freedom’ and is only relevant as a bias correction when k is large, or n is small, otherwise n will do.

The diagonal elements of (square) matrix (1) are the variances of each estimated parameter in
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. The square roots of the elements are the standard errors reported by standard statistical packages like SPSS and STATA. Hypothesis tests regarding the parameter values are based on these standard errors.

The above assumptions are usually referred to as the assumptions of the classical linear model.
4.1 Instrumental Variables (IV)

4.1.1 IV defined

OLS estimation does not yield unbiased or consistent estimates of the parameters in the spatially autoregressive model, because the error terms are correlated with the spatially weighted dependent variable. A common approach when confronted with this sort of problem in the linear regression context is to try to use the technique of instrumental variables (IV), otherwise known as two-stage least squares (2SLS). IV does not give unbiased estimates, but does give consistent estimates.

The regressor that is correlated with the error term can be called an endogenous regressor. Regressors that are uncorrelated with the error term are exogenous. An IV approach to getting consistent estimates when there is an endogenous regressor (or regressors) requires that there are some variables available that are correlated with the endogenous regressor, but are not correlated with the error term in the model. These variables are called instruments. Instruments are variables that only influence the dependent variable through their affect on the endogenous regressor.

4.1.2 One instrument for an endogenous regressor

Consider the following example. Suppose we are interested in getting consistent estimates of

β, the effect of x on y in the following model:

yi = β xi + ui + ei                                                                                                                         (4.2)

An example of this is a regression of individual labour earnings (y) on years of education (x) in a sample of individuals, with perhaps, some other controls for demographics (w). β is the effect of an additional year of schooling on earnings. OLS will give consistent estimates of the parameters of this model if it is correctly specified.

However, suppose x is correlated with the error term, because it is in part affected by the unobservable factor u.

xi = λzi + ui + vi                                                                                                                           (4.3)

In the schooling and earnings example, this factor might be called ‘talent’, or ‘ability’. People with more talent get higher earnings, whatever their education (equation (4.2)). But people with more talent and more ability also get more education, perhaps because they find it easier (equation (4.3)). From (4.3) it can be seen that xi is correlated with the unobservables in (4.2), in that Cov(xi ,ui ) =σu2 ≠ 0 , so OLS estimates are biased and inconsistent.

Note though that zi is a variable that determines xi, but does not directly affect yi. It is a candidate as an instrument.

The IV estimator of this single-regressor model is
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The probability limit (expected value in large samples) is
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  where εi = ui + ei is the composite error term in (4.2). So the IV estimator is consistent if Cov(εi , zi ) = 0 , i.e. the model error term is uncorrelated with the instrument, and if Cov (xi , zi ) is non-zero.
The IV estimates can be computed in two stages using least squares regressions. These stages are:

1. Estimate the model in (4.3) by least squares to get consistent estimates of λ, and compute the model predictions 
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2. Estimate the model in (4.2) by least squares, but replacing xi with the predictions
[image: image462.wmf]i

i

z

x

l

ˆ

ˆ

=

 obtained in the first stage.

Hence, this method is sometimes called two-stage least squares 2SLS.

Learning Activity 4.1. Try to produce an example of your own where a variable is suspected to be endogenous.
4.1.3 More than one instruments for an endogenous regressor

The IV set up can be extended to allow for more than one endogenous regressor, and for additional exogenous regressors, and for multiple instruments. In matrix form, the model we want to estimate is:

y = x1β1 + X2β2 + ε                                                                                                                     (4.4)

where the regressor x1 are endogenous and the regressors in the n x q matrix X2 are exogenous. Let Z1 be an n x r matrix of instruments. Define X = [x1 X2 ] and Z = [Z1 X2 ] 
The 2SLS procedure is

1. Estimate the model x1 = Zλ + u by least squares and obtain the predictions
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More than one endogenous regressor can be accommodated by repeating step 1 for each. But there must be at least as many instruments in Z1 as there are endogenous regressors. Furthermore, each instrument must contain some independent information, and cannot be perfectly correlated with the other instruments or the exogenous regressors X2. The reason for the latter is that the instruments are used to generate predictions of the endogenous variable, 
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. If the instruments are the same as, or linearly related to, the exogenous regressors included in X2, then there is multicollinearity in the regressors in step 2 of the 2SLS procedure.

Technically, the full instrument matrix Z = [Z1 X2] must have at least as many columns as X = [X1 X2] and must have full column rank. This means that the columns in Z should be linearly independent, so that the columns of 
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are linearly independent. These conditions are known as the ‘order’ and ‘rank’ conditions for identification of the model parameters β. If there are more instruments than endogenous regressors, then we have overidentification.

This is usually a good thing, as the IV estimates will be more precise. If there are two few instruments then we have underidentification.

A formula for the Instrumental Variables estimator can be derived from the above.

The first stage OLS estimate gives a matrix of estimated parameters
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 (the exogenous regressors in X2 can be thought of as predictors of themselves). The second stage that gives the IV estimates is a regression of y on 
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                                                 (4.5)
The key assumption needed for consistency of the IV estimator is that the instruments and error term are uncorrelated: plim 1/n Z′ε =0. The reason for the rank condition for identification becomes clear from (5); if any of the columns of Z are linearly dependent then Z′Z is not invertible so (Z′Z)-1 is not defined.

Class Discussion 4.1: Ask the students to provide at least one potential instrumental variable for the endogenous variable ability in the labor earnings regression.
4.2 Generalized Least Squares (GLS)

4.2.1 Homoscedasticty and no autocorrelation assumptions

Consider a standard linear model y = Xβ + ε with all the assumptions of the classical linear model except the assumptions of constant variance and non-autocorrelated error terms. Replace this assumption with 

A3G: Var (ε) = E[εε′] = σ2Ω
where Ω is an n x n symmetric and invertible matrix. Each element ωij of Ω is proportional to the covariance between the errors εi and εj of observations i and j. Each diagonal element ωii is proportional to the variance of εi. When the variance and covariance of the unobserved factors takes this form then the standard formula (1) for estimating the variance covariance matrix of
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 is wrong. The estimates of standard errors will be wrong, and inferences based on these will be misleading. The correct formula is:
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It is unfortunate that we usually do not know Ω unless we put a specific structure on the process that determines the unobservable factors in the model ε. Can we estimate Ω ? In general, no. It is impossible to estimate Ω without restrictions on its structure. Ω has n(n+1)/2 unique parameters but we only have n observations and the number of parameters to be estimated, including those in 
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, must be less than the number of observations.

4.2.2 The variance covariance matrix

There are ways to estimate X′εε′X =σ2X′ΩX which is a k x k matrix of all the cross products of the error terms and the regressors. There are various forms designed to deal with different situations. In general, what’s required is an estimate of the form
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But this usually restricted in some way, e.g. The Huber-White estimate is
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and deals with heteroscedasticity only (only the squares of the residuals are used). 
4.2.3 Generalised Least Squares (GLS) method

This method enables us obtain consistent estimate of the variance-covariance matrix for OLS, even with heteroscedastic or autocorrelated errors. But OLS is not the most efficient estimator here. We can gain precision in least-squares estimates by weighting observations with ‘lower’ variance more heavily than those with ‘higher’ variance, so that the weighted error variance covariance matrix is of the standard form. The intuition is that we weight the estimator so that it places greater emphasis on observations for which the observable explanatory variables do a better job of explaining the dependent variable. This means we need to devise an n x n weighting matrix C such that:

Var (Cε) = E[Cεε′C′] =σ2I

A matrix that does this is a matrix C such that C′C = Ω-1. Weighting all the variables in the model gives

Cy = CXβ +Cε

And the OLS estimator applied to this gives the generalized least squares estimator:
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With variance covariance matrix Var (
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This is all well and good, but how do we know Ω? In general, we don’t unless we have a clear model of how the error structure occurs. Note that it is impossible to estimate Ω nonparametrically without restrictions on its structure. Ω has n(n+1)/2 unique parameters. Also note that this assumes that the parameters are homogenous across the sample i.e. they do not change for different groups in the data. Sometimes we can think of the OLS parameter estimates 
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as being averages of a range of responses across individual types in an individual data set, or averages of effects across countries in a sample of countries. Weighting the data will then change the parameter estimate according to which groups are more heavily weighted.

Class Presentation 4.1: Weighted Least squares (WLS) is an alternative estimation method when there is a problem of hetroscedasticity in a data. Assign two students one to present the model and the other to present the results of Income data using WLS by STATA. Note that WLS is installed in STATA using the command findit wls0 and also use weighing variable dsmk. 
4.3 Maximum Likelihood (MLH) Method

This is a general method for estimating the parameters in a model, based on assumptions about the joint distribution of the data. This method has the advantage that the model does not need to be linear.

The standard linear regression model can be estimated by ML methods. Consider the model  yi= xi′β + εi   where εi~N(0,σ2). This means that the probability density function for εi is
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Since the errors are assumed independent, the joint density is obtained by multiplying over all

n observations
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Which can be written as a function of the unknown parameters and the observed data
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Taking logs, and re-expressing as a function of the parameters, given the data we get the ‘loglikelihood’
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The method of maximum likelihood involves using numerical methods on a computer to iterate the numbers in the vector of parameters [β σ] until the function is maximized (or –log L is minimized). However, there’s not much point in using numerical methods to obtain the maximum likelihood in the example just given. Holding σ2 constant, the function will be maximized when the sum of squared residuals 
[image: image485.wmf]2

÷

ø

ö

ç

è

æ

¢

-

å

b

i

i

i

x

y

is minimized. This is just the objective criterion for OLS. Differentiating with respect to σ2 we get
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To maximize, set this expression to zero. For a given estimate of β the estimate of the variance σ2 will be
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This is the same as OLS in large samples. Clearly, maximum likelihood and OLS estimates of β are equivalent when the error terms are assumed to be normally distributed. The ML and OLS estimates of σ2 are asymptotically equivalent, i.e. they tend to the same thing in very large samples.

Maximum Likelihood comes into its own when the model is very non-linear in the parameters, and cannot be estimated by a linear least-squares method, or when there are additional parameters that can only be estimated by imposing a particular distribution on the error terms. We will come across this in our discussion of spatial autoregressions.

4.3.1 Some general properties of the Maximum Likelihood Method

1. For large data samples (large n) the likelihood function, L, approaches a normal distribution.

2. Maximum likelihood estimates are usually consistent. For large n the estimates converge to the true value of the parameters we wish to determine.
3. Maximum likelihood estimates are usually unbiased. For all sample sizes the parameter of interest is calculated correctly.

4. Maximum likelihood estimate is efficient: the estimate has the smallest variance.

5. Maximum likelihood estimate is sufficient: it uses all the information in the observations (the xi’s).

6. The solution from MLM is unique.

7. The bad news of the MLM is that we must know the correct probability distribution for the problem at hand!

Learning Activity 4.2. Compare and contrast OLS with MLH.
Class Presentation 4.2. Assign some students to present another method called the Method of Moments (MOM) which estimates its parameters using sample moments.

4.4 Summary

Some of the OLS assumptions (exogeneity, homoscedasticty, no autocorrelation, etc.) are very restrictive assumptions in the real and hence fail in many cases. In such cases, it is important to have alternative methods of estimation. This Topic presented the alternative methods of estimating regression coefficients in the case where three important OLS assumptions fail, namely: exogeneity, homoscedasticty and no autocorrelation. Endogeneity occurs when the explanatory variables are correlated with the error terms. It leads to biased and inconsistent OLS estimates. In this case, we look for a variable that is highly correlated with the endogeneous variable, but not with the error terms called an instrumental variable (IV).  Endogeneity is a general problem in the social sciences, and a procedure that is constructed for dealing with endogenous independent variables, namely 2SLS was sketched. 2SLS yields consistent estimates, but standard errors are generally very large. Moreover, finding proper instruments is a very difficult task, and this could be one reason for the less applicability of 2SLS in other social science areas. Hetrocedasticity and autocorrelation can be removed from the model by using GLS which transforms data the variance covariance matrix of the errors is a unit matrix. Note here that both IV and GLS run OLS after getting and instrument and transform data so that hetroscedasticity and autocorrelation are removed respectively. However, MLH method as its name indicates maximizes the likelihood function (joint probability distribution) to estimate its parameters. This method leads to unbiased, consistent and efficient estimates without any underlying assumptions like OLS.

Learning Activities

Exercise 4

You are expected to complete the exercises below within a week and submit to your facilitator by uploading on the learning management system.

1. a.   Explain briefly and in your own words the algorithms of least squares, BLUE and Maximum Likelihood estimation.  Your explanations should be general.  Do not derive any particular estimators mathematically as a part of your explanation. 

b.   What information is yielded by the BLUE procedure as applied to the estimation of regression coefficients, which is not yielded by the LSE procedure?  Why is this so? 

c.   What information is yielded by the Maximum Likelihood procedure as applied to the estimation of regression coefficients, which is not yielded by the LSE or BLUE procedures?  Why is this so? 

2. Use MLH method to derive the parameter estimates of 

a. Bernouli distribution

b. Poisson distribution

3. Consider the regression of Y on X variables (with a constant) 
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Consider an alternative regression of Z = XP where P is a nonsingular matrix of order K. 

a) Prove that the residual vector in the regressions of Y on X and Y on Z are identical. 

b) Define a transformation matrix that expresses Y and X variables in mean deviation form and label them as y and x.  Define  another  transformation  matrix  that  will  convert the y  and x  variables  in  standardized  form  (i.e.,  each  of  the  variables  will  have  zero  mean and unit variance). 

c)  Show  that  the  effect  of  such  transformation  has  no  effect  on
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,  standard  errors of (  and their t values. 

d) Show that the residual sum of squares, 
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in the OLS regression of Y on X and the regression of y on x are the same.
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Topic 5. Classical Linear Regression “Problems”

Learning Objectives

By the end of this topic, students should be able to:
·  Identify cases in which the OLS assumptions fail;

· Recognize the consequences of failures of these assumptions;

· Identify some of the causes of failures of these assumptions;

· Test whether these problems exists or not;

· Identify which model to use when these assumptions fail.

Key Terms 

Failure of OLS assumptions, specification errors, hetroscedasticity, autocorrelation, non-normality, multicollinearity, simultaneity.

Introduction

This topic provides a brief description of the desirable properties and assumptions of the classical ordinary least squares (OLS) regression model.  It also reviews the more common situations where such assumptions are not likely to hold true. 

Desirable properties of estimators 

The estimators (formulas) used to estimate the population parameters (i.e., coefficients) in a multiple regression model should be unbiased, efficient, have minimum mean square error (MSE) and be consistent.  An unbiased parameter formula is one that generates, for repeated samples, parameter estimates that have an expected (average) value equal to the true population parameter.  An efficient parameter formula is one that generates, for repeated samples, parameter estimates whose variance is minimized.  A minimum mean square error formula is one that, for repeated samples, minimizes a combination of bias and efficiency.  Finally, a consistent parameter formula is one that generates, for large repeated samples, parameter estimates that have an expected (average) value that converges to the true population parameter.

Classical OLS regression assumptions 

The formulas used by classical ordinary least squares (OLS) regression to estimate the population parameters in a regression model will be unbiased, be efficient, have minimum mean square error (MSE) and be consistent, if the following assumptions hold true: 

1. The model is correctly specified, e.g., all relevant explanatory variables are included in the regression. 

2. The error terms are normally distributed. 

3. The error terms have constant variance. 

4. The error terms are independent of each other. 

If the above assumptions are “violated” the classical regression formulas may not be unbiased, efficient, have minimum mean square error (MSE) or be consistent. 

5.1 Heteroscedasticity

Heteroscedasticity occurs when the error variance has non-constant variance.  In this case, we can think of the disturbance for each observation as being drawn from a different distribution with a different variance.  Stated equivalently, the variance of the observed value of the dependent variable around the regression line is non-constant.  We can think of each observed value of the dependent variable as being drawn from a different conditional probability distribution with a different conditional variance. A general linear regression model with the assumption of heteroscedasticity can be expressed as follows:


Yi = (1 + (2 Xi2 + … + (k Xik + εi
Var(εi) = E(εi 2) = (t2           for i = 1, 2, …, n
Note that we now have a t subscript attached to sigma squared.  This indicates that the disturbance for each of the n-units is drawn from a probability distribution that has a different variance. 

5.1.1 Consequences of heteroscedasticity  

If the error term has non-constant variance, but all other assumptions of the classical linear regression model are satisfied, then the consequences of using the OLS estimator to obtain estimates of the population parameters are: 

1. The OLS estimator is still unbiased. 

2. The OLS estimator is inefficient; that is, it is not BLUE. 

3. The estimated variances and covariances of the OLS estimates are biased and inconsistent. 

4. Hypothesis tests are not valid.  

5.1.2 Detection of heteroscedasticity     

There are several ways to use the sample data to detect the existence of heteroscedasticity.  

Plot the residuals 

The residual for the ith observation, 
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, is an unbiased estimate of the unknown and unobservable error for that observation, 
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.  Thus the squared residuals, 
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can be used as an estimate of the unknown and unobservable error variance, (i2 = E (
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).  You can calculate the squared residuals and then plot them against an explanatory variable that you believe might be related to the error variance.  If you believe that the error variance may be related to more than one of the explanatory variables, you can plot the squared residuals against each one of these variables.  Alternatively, you could plot the squared residuals against the fitted value of the dependent variable obtained from the OLS estimates.  Most statistical programs have a command to do these residual plots for you.  It must be emphasized that this is not a formal test for heteroscedasticity.  It would only suggest whether heteroscedasticity may exist.  You should not substitute the residual plot for a formal test. 

Breusch-Pagan Test, and Harvey-Godfrey Test 

There are a set of heteroscedasticity tests that require an assumption about the structure of the heteroscedasticity, if it exists.  That is, to use these tests you must choose a specific functional form for the relationship between the error variance and the variables that you believe determine the error variance.  The major difference between these tests is the functional form that each test assumes.  Two of these tests are the Breusch-Pagan test and the Harvey-Godfrey Test.  The Breusch-Pagan test assumes the error variance is a linear function of one or more variables.  The Harvey-Godfrey Test assumes the error variance is an exponential function of one or more variables.  The variables are usually assumed to be one or more of the explanatory variables in the regression equation.  

Example 5.1: Suppose that the regression model is given by 




Yi = (1 + (2Xi + εi            for i = 1, 2, …, n
We postulate that all of the assumptions of classical linear regression model are satisfied, except for the assumption of constant error variance.  Instead we assume the error variance is non-constant.  We can write this assumption as follows

Var(εi) = E(εi 2) = (i2           for i = 1, 2, …, n  

Suppose that we assume that the error variance is related to the explanatory variable Xi.  The Breusch-Pagan test assumes that the error variance is a linear function of Xi.  We can write this as follows.





(i2 = (1 + (2Xi                    for i = 1, 2, …, n
The Harvey-Godfrey test assumes that the error variance is an exponential function of X3.  This can be written as follows





(i2 = exp((1 + (2Xi)

or taking a logarithmic transformation





ln((i2) = (1 + (2Xi               for i = 1, 2, …, n
The null-hypothesis of constant error variance (no heteroscedasticity) can be expressed as the following restriction on the parameters of the heteroscedasticity equation:





Ho: (2 = 0





H1: (2 ( 0   

To test the null-hypothesis of constant error variance (no heteroscedasticity), we can use a Lagrange multiplier test.  This follows a chi-square distribution with degrees of freedom equal to the number of restrictions you are testing.  In this case where we have included only one variable, Xi, we are testing one restriction, and therefore we have one degree of freedom. Because the error variances (i2 for the n-observations are unknown and unobservable, we must use the squared residuals as estimates of these error variances.  To calculate the Lagrange multiplier test statistic, proceed as follows. 

Step 1: Regress Yi against a constant and Xi using the OLS estimator. 

Step 2: Calculate the residuals from this regression, 
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Step 3: Square these residuals, 
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.  For the Harvey-Godfrey Test, take the logarithm of these squared residuals, ln(
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Step 4: For the Breusch-Pagan Test, regress the squared residuals, 
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, on a constant and Xt, using OLS. For the Harvey-Godfrey Test, regress the logarithm of the squared residuals, ln(
[image: image499.wmf]2

ˆ

i

e

), on a a constant and Xt, using OLS.  This is called the auxiliary regression. 

Step 5: Find the unadjusted R2 statistic and the number of observations, n, for the auxiliary regression.

Step 6: Calculate the LM test statistic as follows:   LM = nR2.  

Once you have calculated the test statistic, compare the value of the test statistic to the critical value for some predetermined level of significance. If the calculated test statistic exceeds the critical value, then reject the null-hypothesis of constant error variance and conclude that there is heteroscedasticity.  If not, do not reject the null-hypothesis and conclude that there is no evidence of heteroscedasticity.  

These heteroscedasticity tests have two major shortcomings:

1. You must specify a model of what you believe is the structure of the heteroscedasticity, if it exists.  For example, the Breusch-Pagan test assumes that the error variance is a linear function of one or more of the explanatory variables, if heteroscedasticity exists.  Thus, if heteroscedasticity exists, but the error variance is a non-linear function of one or more explanatory variables, then this test will not be valid. 

2. If the errors are not normally distributed, then these tests may not be valid. 

White’s test  

The White test is a general test for heteroscedasticity.  It has the following advantages:

1. It does not require you to specify a model of the structure of the heteroscedasticity, if it exists.

2. It does not depend on the assumption that the errors are normally distributed. 

3. It specifically tests if the presence of heteroscedasticity causes the OLS formula for the variances and the covariances of the estimates to be incorrect. 

Example 5.2: Suppose that the regression model is given by 




Yt = (1 + (2Xt2 + (3Xt3 + (t                for t = 1, 2, …, n
We postulate that all of the assumptions of classical linear regression model are satisfied, except for the assumption of constant error variance.  For the White test, assume the error variance has the following general structure.


(t2 = (1 + (2Xt2 + (3Xt3 + (4X2t2 + (5X2t3 + (6Xt2Xt3           for t = 1, 2, …, n
Note that we include all of the explanatory variables in the function that describes the error variance, and therefore we are using a general functional form to describe the structure of the heteroscedasticity, if it exists. The null-hypothesis of constant error variance (no heteroscedasticity) can be expressed as the following restriction on the parameters of the heteroscedasticity equations:




Ho: (2 = (3 = (4 = (5 = (6 = 0





H1: At least one is non-zero

To test the null-hypothesis of constant error variance (no heteroscedasticity), we can use a Lagrange multiplier test.  This follows a chi-square distribution with degrees of freedom equal to the number of restrictions you are testing.  In this case, we are testing 5 restrictions, and therefore we have 5 degrees of freedom. Once again, because the error variances (t2 for the n-units are unknown and unobservable, we must use the squared residuals as estimates of these error variances.  To calculate the Lagrange multiplier test statistic, proceed as follows.  

Step 1: Regress Yt against a constant, Xt2, and Xt3 using the OLS estimator. 

Step 2: Calculate the residuals from this regression, 
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Step 3: Square these residuals, 
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Step 4: Regress the squared residuals, 
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, on a constant, Xt2, Xt3, X2t2, X2t3 and Xt2Xt3 using OLS. 

Step 5: Find the unadjusted R2 statistic and the number of observations, n, for the auxiliary regression.

Step 6: Calculate the LM test statistic as follows:   LM = nR2.  

Once you have calculated the test statistic, compare the value of the test statistic to the critical value for some predetermined level of significance. If the calculated test statistic exceeds the critical value, then reject the null-hypothesis of constant error variance and conclude that there is heteroscedasticity.  If not, do not reject the null-hypothesis and conclude that there is no evidence of heteroscedasticity.  

The following points should be noted about the White’s Test.

1. If one or more of the X’s are dummy variables, then you must be careful when specifying the auxiliary regression.  For example, suppose the X3 is a dummy variable. In this case, the variable X23 is the same as the variable X3.  If you include both of these in the auxiliary regression, then you will have perfect multicollinearity.  Therefore, you should exclude X23 from the auxiliary regression. 

2. If you have a large number of explanatory variables in the model, the number of explanatory variables in the auxiliary regression could exceed the number of observations.  In this case, you must exclude some variables from the auxiliary regression.  You could exclude the linear terms, and/or the cross-product terms; however, you should always keep the squared terms in the auxiliary regression. 

5.2.3 Remedies for heteroscedasticity   

Suppose that we find evidence of heteroscedasticity.  If we use the OLS estimator, we will get unbiased but inefficient estimates of the parameters of the model.  Also, the estimates of the variances and covariances of the parameter estimates will be biased and inconsistent, and as a result hypothesis tests will not be valid.  When there is evidence of heteroscedasticity, econometricians do one of two things.

1. Use to OLS estimator to estimate the parameters of the model.  Correct the estimates of the variances and covariances of the OLS estimates so that they are consistent. 

2. Use an estimator other than the OLS estimators such as GLS or WLS to estimate the parameters of the model. 

Many econometricians choose alternative #1. This is because the most serious consequence of using the OLS estimator when there is heteroscedasticity is that the estimates of the variances and covariances of the parameter estimates are biased and inconsistent.  If this problem is corrected, then the only shortcoming of using OLS is that you lose some precision relative to some other estimator that you could have used.  However, to get more precise estimates with an alternative estimator, you must know the approximate structure of the heteroscedasticity. If you specify the wrong model of heteroscedasticity, then this alternative estimator can yield estimates that are worse than the OLS estimator.  

5.2.3.1 Heteroscedasticity Consistent Covariance Matrix (HCCM) Estimation  

White developed a method for obtaining consistent estimates of the variances and covariances of the OLS estimates.   This is called the heteroscedasticity consistent covariance matrix (HCCM) estimator.  Most statistical packages have an option that allows you to calculate the HCCM matrix. 
As was discussed in Topic 4 GLS can be used when there are problems of hetroscedasticity and autocorrelation. However, it has its own weaknesses.
5.2.3.2 Problems with using the GLS estimator 

The major problem with GLS estimator is that to use it you must know the true error variance and standard deviation of the error for each observation in the sample.  However, the true error variance is always unknown and unobservable.  Thus, the GLS estimator is not a feasible estimator. 

5.2.3.3 Feasible Generalized Least Squares (FGLS) estimator 

The GLS estimator requires that (t be known for each observation in the sample.  To make the GLS estimator feasible, we can use the sample data to obtain an estimate of (t for each observation in the sample.  We can then apply the GLS estimator using the estimates of (t.  When we do this, we have a different estimator.  This estimator is called the Feasible Generalized Least Squares Estimator, or FGLS estimator.  

Example 5.3. Suppose that we have the following general linear regression model. 




Yt = (1 + (2Xt2 + (3Xt3 + (t                 for t = 1, 2, …, n
Var((t)  = (t2 = Some Function           for t = 1, 2, …, n   

The rest of the assumptions are the same as the classical linear regression model.  Suppose that we assume that the error variance is a linear function of Xt2 and Xt3.  Thus, we are assuming that the heteroscedasticity has the following structure.

Var((t)  = (t2 = (1 + (2Xt2 + (3Xt3                 for t = 1, 2, …, n  

To obtain FGLS estimates of the parameters (1, (2, and (3 proceed as follows. 

Step 1: Regress Yt against a constant, Xt2, and Xt3 using the OLS estimator. 

Step 2: Calculate the residuals from this regression, 
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Step 3: Square these residuals, 
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Step 4: Regress the squared residuals, 
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, on a constant, Xt2, and Xt3, using OLS. 

Step 5: Use the estimates of (1, (2, and (3 to calculate the predicted values
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. This is an estimate of the error variance for each observation.  Check the predicted values.  For any predicted value that is non-positive replace it with the squared residual for that observation.  This ensures that the estimate of the variance is a positive number (you can’t have a negative variance).  

Step 6: Find the square root of the estimate of the error variance, 
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for each observation.

Step 7: Calculate the weight wt = 1/
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for each observation. 

Step 8: Multiply Yt, , Xt2, and Xt3 for each observation by its weight. 

Step 9: Regress wtYt on  wt,   wtXt2,  and  wtXt3 using OLS. 

Properties of the FGLS Estimator 

If the model of heteroscedasticity that you assume is a reasonable approximation of the true heteroscedasticity, then the FGLS estimator has the following properties.  1) It is non-linear. 2) It is biased in small samples. 3) It is asymptotically more efficient than the OLS estimator. 4) Monte Carlo studies suggest it tends to yield more precise estimates than the OLS estimator.  However, if the model of heteroscedasticity that you assume is not a reasonable approximation of the true heteroscedasticity, then the FGLS estimator will yield worse estimates than the OLS estimator.  

5.2 Autocorrelation

Autocorrelation occurs when the errors are correlated.  In this case, we can think of the disturbances for different observations as being drawn from different distributions that are not explanatory distributions. 

5.2.1 Structure of autocorrelation

There are many different types of autocorrelation. 

First-order autocorrelation  

The model of autocorrelation that is assumed most often is called the first-order autoregressive process. This is most often called AR(1).  The AR(1) model of autocorrelation assumes that the disturbance in period t (current period) is related to the disturbance in period t-1 (previous period).  For the consumption function example, the general linear regression model that assumes an AR(1) process is given by 





Yt = ( + (Xt + εt                 for t = 1, …, 37   





εt = ((t-1 + µt                        where  -1 < ( < 1  

The second equation tells us that the disturbance in period t (current period) depends upon the disturbance in period t-1 (previous period) plus some additional amount, which is an error.  In our example, this assumes that the disturbance for the current year depends upon the disturbance for the previous year plus some additional amount or error.  The following assumptions are made about the error term µt: E(µt), Var(µt) = (2, Cov(µt,µs) = 0.  That is, it is assumed that these errors are explanatory and identically distributed with mean zero and constant variance. The parameter ( is called the first-order autocorrelation coefficient.  Note that it is assumed that ( can take any value between negative one and positive one.  Thus, ( can be interpreted as the correlation coefficient between (t and (t-1.  If ( > 0, then the disturbances in period t are positively correlated with the disturbances in period t-1. In this case there is positive autocorrelation.  This means that when disturbances in period t-1 are positive disturbances, then disturbances in period t tend to be positive. When disturbances in period t-1 are negative disturbances, then disturbances in period t tend to be negative.  Time-series data sets in economics are usually characterized by positive autocorrelation. If ( < 0, then the disturbances in period t are negatively correlated with the disturbances in period t-1. In this case there is negative autocorrelation.  This means that when disturbances in period t-1 are positive disturbances, then disturbances in period t tend to be negative. When disturbances in period t-1 are negative disturbances, then disturbances in period t tend to be positive.  

Second-order autocorrelation  

An alternative model of autocorrelation is called the second-order autoregressive process or AR(2).  The AR(2) model of autocorrelation assumes that the disturbance in period t is related to both the disturbance in period t-1 and the disturbance in period t-2.  The general linear regression model that assumes an AR(2) process is given by 





Yt = ( + (Xt + εt                
 for t = 1, …, 37   





εt = (1εt-1 + (2εt-2 + µt                    

The second equation tells us that the disturbance in period t depends upon the disturbance in period t-1, the disturbance in period t-2, and some additional amount, which is an error. Once again, it is assumed that these errors are explanatory and identically distributed with mean zero and constant variance.  

(th-order autocorrelation 

The general linear regression model that assumes a (th-order autoregressive process or AR((), where ( can assume any positive value is given by 





Yt = ( + (Xt + εt                 for t = 1, …, n   





εt = (1εt-1 + (2εt-2 + …+ ((εt-( + µt  

For example, if you have quarterly data on consumption expenditures and disposable income, you might argue that a fourth-order autoregressive process is the appropriate model of autocorrelation.  However, once again, the most often used model of autocorrelation is the first-order autoregressive process.  

5.2.2 Consequences of Autocorrelation

The consequences are the same as heteroscedasticity.  That is:

1. The OLS estimator is still unbiased.

2. The OLS estimator is inefficient; that is, it is not BLUE. 

3. The estimated variances and covariances of the OLS estimates are biased and inconsistent. If there is positive autocorrelation, and if the value of a right-hand side variable grows over time, then the estimate of the standard error of the coefficient estimate of this variable will be too low and hence the t-statistic too high.

4. Hypothesis tests are not valid.  

5.2.3 Detection of autocorrelation  

There are several ways to use the sample data to detect the existence of autocorrelation. 

Plot the residuals  

The error for the tth observation, (t, is unknown and unobservable.  However, we can use the residual for the tth observation, 
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as an estimate of the error.  One way to detect autocorrelation is to estimate the equation using OLS, and then plot the residuals against time.  In our example, the residual would be measured on the vertical axis.  The years 1959 to 1995 would be measured on the horizontal axis.  You can then examine the residual plot to determine if the residuals appear to exhibit a pattern of correlation.  Most statistical packages have a command that does this residual plot for you.  It must be emphasized that this is not a formal test of autocorrelation.  It would only suggest whether autocorrelation may exist.  You should not substitute a residual plot for a formal test.  

The Durbin-Watson d test  

The most often used test for first-order autocorrelation is the Durbin-Watson d test.  It is important to note that this test can only be used to test for first-order autocorrelation, it cannot be used to test for higher-order autocorrelation.  Also, this test cannot be used if the lagged value of the dependent variable is included as a right-hand side variable.  

Example 5.3: Suppose that the regression model is given by 




Yt = (1 + (2Xt2 + (3Xt3 + εt   





εt = (εt-1 + µt                        where  -1 < ( < 1  




Where Yt is annual consumption expenditures in year t, Xt2 is annual disposable income in year t, and Xt3 is the interest rate for year t.  

We want to test for first-order positive autocorrelation.  Economists usually test for positive autocorrelation because negative serial correlation is highly unusual when using economic data.  The null and alternative hypotheses are:





H0: ( = 0





H1:  ( > 0

Note that this is a one-sided or one-tailed test.  

To do the test, proceed as follows. 

Step 1: Regress Yt against a constant, Xt2 and Xt3 using the OLS estimator. 

Step 2: Use the OLS residuals from this regression to calculate the following test statistic:





d = (t=2(
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Note the following:

1. The numerator has one fewer observation than the denominator.  This is because an observation must be used to calculate 
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2. It can be shown that the test-statistic d can take any value between 0 and 4. 

3. It can be shown if d = 0, then there is extreme positive autocorrelation.

4. It can be shown if d = 4, then there is extreme negative autocorrelation.

5. It can be shown if d = 2, then there is no autocorrelation.  

Step 3: Choose a level of significance for the test and find the critical values dL and du.  Table A.5 in Ramanathan gives these critical values for a 5% level of significance.  To find these two critical values, you need two pieces of information: n = number of observations,  k’ = number of right-hand side variables, not including the constant.  In our example, n = 37, k’ = 2.  Therefore, the critical values are: dL = 1.36, du = 1.59.  

Step 4: Compare the value of the test statistic to the critical values using the following decision rule.

i. If    d < dL   then reject the null and conclude there is first-order autocorrelation.

ii. If    d > du   then do accept the null and conclude there is no first-order autocorrelation.

iii. If    dL ( d ( dU the test is inconclusive. 

Note:  A rule of thumb that is sometimes used is to conclude that there is no first-order autocorrelation if the d statistic is between 1.5 and 2.5.  A d statistic below 1.5 indicates positive first-order autocorrelation.  A d statistic of greater than 2.5 indicates negative first-order autocorrelation.  However, strictly speaking, this is not correct.  

The Breusch-Godfrey Lagrange Multiplier Test  

The Breusch-Godfrey test is a general test of autocorrelation. It can be used to test for first-order autocorrelation or higher-order autocorrelation.  This test is a specific type of Lagrange multiplier test.  

Example 5.4: Suppose that the regression model is given by 




Yt = (1 + (2Xt2 + (3Xt3 + εt   





εt = (1εt-1 + (2εt-2 + µt                        where  -1 < ( < 1  





Where Yt is annual consumption expenditures in year t, Xt2 is annual disposable income in year t, and Xt3 is the interest rate for year t.  We want to test for second-order autocorrelation.  Economists usually test for positive autocorrelation because negative serial correlation is highly unusual when using economic data.  The null and alternative hypotheses are





H0: (1 = (2 = 0





H1:  At least one ( is not zero

The logic of the test is as follows.  Substituting the expression for εt into the regression equation yields the following:





Yt = (1 + (2Xt2 + (3Xt3 + (1εt-1 + (2εt-2 + µt 

To test the null-hypotheses of no autocorrelation, we can use a Lagrange multiplier test to whether the variables εt-1 and εt-2 belong in the equation.  

To do the test, proceed as follows. 

Step 1: Regress Yt against a constant, Xt2 and Xt3 using the OLS estimator and obtain the residuals 
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Step 2: Regress 
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against a constant, Xt2, Xt3, 
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and 
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using the OLS estimator. Note that for this regression you will have n-2 observations, because two observations must be used to calculate the residual variables 
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.  Thus, in our example you would run this regression using the observations for the period 1961 to 1995.  You lose the observations for the years 1959 and 1960.Thus, you have 35 observations. 

Step 3: Find the unadjusted R2 statistic and the number of observations, n – 2, for the auxiliary 


regression. 

Step 4: Calculate the LM test statistic as follows:  LM = (n – 2)R2.  

Step 5: Choose the level of significance of the test and find the critical value of LM.  The LM statistic has a chi-square distribution with two degrees of freedom, (2(2).  For the 5% level of significance the critical value is 5.99. 

Step 6: If the value of the test statistic, LM, exceeds 5.99, then reject the null and conclude that there is autocorrelation. If not, accept the null and conclude that there is no autocorrelation.

5.2.4 Remedies for autocorrelation  

If the true model of the data generation process is characterized by autocorrelation, then the best linear unbiased estimator (BLUE) is the generalized least squares (GLS) estimator which was presented in Topic 4.  

Problems with Using the GLS Estimator  

The major problem with the GLS estimator is that to use it you must know the true autocorrelation coefficient (. If you don’t the value of (, then you can’t create the transformed variables Yt* and Xt*.  However, the true value of ( is almost always unknown and unobservable.  Thus, the GLS is not a feasible estimator.

Feasible Generalized Least Squares (FGLS) estimator  

The GLS estimator requires that we know the value of (.  To make the GLS estimator feasible, we can use the sample data to obtain an estimate of (.  When we do this, we have a different estimator.  This estimator is called the Feasible Generalized Least Squares Estimator, or FGLS estimator.  The two most often used FGLS estimators are:

1. Cochrane-Orcutt estimator

2. Hildreth-Lu estimator

Example 5.5: Suppose that we have the following general linear regression model.  For example, this may be the consumption expenditures model. 




Yt = ( + (Xt + εt                 for t = 1, …, n   





(t = ((t-1 + µt                        

Recall that the error term  (t satisfies the assumptions of the classical linear regression model.  This statistical model describes what we believe is the true underlying process that is generating the data. 

Cochrane-Orcutt Estimator  

To obtain FGLS estimates of ( and ( using the Cochrane-Orcutt estimator, proceed as follows.

Step 1:  Regress Yt on a constant and Xt using the OLS estimator.

Step 2:  Calculate the residuals from this regression, 
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Step 3:  Regress 
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using the OLS estimator.  Do not include a constant term in the regression. This yields an estimate of (, denoted 
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Step 4:  Use the estimate of ( to create the transformed variables: Yt* = Yt - (Yt-1,  Xt* =  Xt - (Xt-1.

Step 5:  Regress the transformed variable Yt* on a constant and the transformed variable Xt* using the the OLS estimator.  

Step 6:  Use the estimate of ( and ( from step 5 to get calculate a new set of residuals, 
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Step 7:  Repeat step 2 through step 6. 

Step 8:  Continue iterating step 2 through step 5 until the estimate of ( from two successive iterations differs by no more than some small predetermined value, such as 0.001. 

Step 9:  Use the final estimate of ( to get the final estimates of ( and (.  

Hildreth-Lu Estimator 

To obtain FGLS estimates of ( and ( using the Hildreth-Lu estimator, proceed as follows. 

Step 1:  Choose a value of ( of between –1 and 1. 

Step 2:  Use the this value of ( to create the transformed variables: Yt* = Yt - (Yt-1, Xt* = Xt - (Xt-1.

Step 3:  Regress the transformed variable Yt* on a constant and the transformed variable Xt* using the the OLS estimator.  

Step 4:  Calculate the residual sum of squares for this regression. 

Step 5:  Choose a different value of ( of between –1 and 1. 

Step 6:  Repeat step 2 through step 4. 

Step 7:  Repeat Step 5 and step 6. By letting ( vary between –1 and 1in a systematic fashion, you get a set of values for the residual sum of squares, one for each assumed value of (.

Step 8:  Choose the value of ( with the smallest residual sum of squares. 

Step 9:  Use this estimate of ( to get the final estimates of ( and (.  

Comparison of the two estimators

If there is more than one local minimum for the residual sum of squares function, the Cochrane-Orcutt estimator may not find the global minimum.  The Hildreth-Lu estimator will find the global minimum.  Most statistical packages have both estimators.  Some econometricians suggest that you estimate the model using both estimators to make sure that the Cochrane-Orcutt estimator doesn’t miss the global minimum. 

Properties of the FGLS estimator 

If the model of autocorrelation that you assume is a reasonable approximation of the true autocorrelation, then the FGLS estimator will yield more precise estimates than the OLS estimator.  The estimates of the variances and covariances of the parameter estimates will also be unbiased and consistent.  However, if the model of autocorrelation that you assume is not a reasonable approximation of the true autocorrelation, then the FGLS estimator will yield worse estimates than the OLS estimator. 

Generalizing the model  

The above examples assume that there is one explanatory variable and first-order autocorrelation.  The model and FGLS estimators can be easily generalized to the case of k explanatory variables and higher-order autocorrelation. 

Learning Activity 5.1. Compare and contrast hetroscedasticity with autocorrelation.

5.3 Multicollinearity

One of the assumptions of CLR model is that there are no exact linear relationships between the independent variables and that there are at least as many observations as the dependent variables (Rank of the regression). If either of these is violated it is impossible to estimate OLS and the estimating procedure simply breaks down.

In estimation the number of observations should be greater than the number of parameters to be estimated. The difference between the sample size the number of parameters (the difference is the degree of freedom) should be as large as possible.

In regression there could be an approximate relationship between independent variables. Even though the estimation procedure might not entirely breakdown when the independent variables are highly correlated, severe estimation problems might arise.  

There could be two types of multicollinearity problems: Perfect and less than perfect collinearity. If multicollinearity is perfect, the regression coefficients of the X variables are indeterminate and their standard errors infinite.

If multicollinearity is less than perfect, the regression coefficient although determinate, possesses large standard errors, which means the coefficients cannot be estimated with great precision.

5.3.1 Sources of multicollinearity 

1. The data collection method employed: For instance, sampling over a limited range.

2. Model specification: For instance adding polynomial terms.

3. An over determined model: This happens when the model has `.

4. In time series data, the regressors may share the same trend

5.3.2 Consequences of multicollinearity

1. Although BLUE, the OLS estimators have larger variances making precise estimation difficult. OLS are BLUE because near collinearity does not affect the assumptions made.
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Both denominators include the correlation coefficient. When the independent variables are uncorrelated, the correlation coefficient is zero.  However, when the correlation coefficient becomes high (close to 1) in absolute value, multicollinearity is present with the result that the estimated variances of both parameters get very large. 

While the estimated parameter values remain unbiased, the reliance we place on the value of one or the other will be small. This presents a problem if we believe that one or both of the variables ought to be in the model, but we cannot reject the null hypothesis because of the large standard errors. In other words the presence of multicollinearity makes the precision of the OLS estimators less precise.

2. The confidence intervals tend to be much wider, leading to the acceptance of the null hypothesis

3. The t ratios may tend to be insignificant and the overall coefficient of determination may be high.

4. The OLS estimators and their standard errors could be sensitive to small changes in the data.

5.3.3 Detection of multicollinearity

The presence of multicollinearity makes it difficult to separate the individual effects of the collinear variables on the dependent variable.  Explanatory variables are rarely uncorrelated with each other and multicollinearity is a matter of degree.

1. A relatively high [image: image528.wmf]2
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 and significant F-statistics with few significant t- statistics.

2. Wrong signs of the regression coefficients

3. Examination of partial correlation coefficients among the independent variables.

4. Use subsidiary or auxiliary regressions. This involves regressing each independent variable on the remaining independent variables and use F-test to determine the significance of[image: image529.wmf]2
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     5) Using VIF (variance inflating factor)
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Where, 
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 is the multiple correlation coefficients between the independent variables.
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 is used to indicate the presence of multicollinearity between continuous variables. When the variables to be investigated are discrete in nature, Contingency Coefficient (CC) is used. 
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Where, N is the total sample size 

If CC is greater than 0.75, the variables are said to be collinear.

5.3.4 Remedies of multicollinearity

Several methodologies have been proposed to overcome the problem of multicollinearity.

1. Do nothing: Sometimes multicollinearity is not necessarily bad or unavoidable. If the [image: image535.wmf]2
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of the regression exceeds the [image: image536.wmf]2
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of the regression of any independent variable on other variables, there should not be much worry. Also, if the t-statistics are all greater than 2 there should not be much problem. If the estimation equation is used for prediction and the multicollinearity problem is expected to prevail in the situation to be predicted, we should not be concerned much about multicollinearity.

2. Drop a variable(s) from the model: This however could lead to specification error.
3. Acquiring additional information: Multicollinearity is a sample problem. In a sample involving another set of observations multicollinearity might not be present. Also, increasing the sample size would help to reduce the severity of collinearity problem.

4. Rethinking of the model: Incorrect choice of functional form, specification errors, etc…

5. Prior information about some parameters of a model could also help to get rid of multicollinearity. 

6. Transformation of variables: e.g. into logarithms, forming ratios, etc…

7. Use partial correlation and stepwise regression

This involves the determination the relationship between a dependent variable and independent variable(s) by netting out the effect of other independent variable(s). Suppose a dependent variable Y is regressed on two independent variables[image: image537.wmf]12
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The partial correlation coefficient between [image: image539.wmf]2
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must be defined in such away that it measures the effect of [image: image540.wmf]2
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 which is not accounted for the other variables in the model. In the present regression equation, this is done by finding the partial correlation coefficient that is calculated by eliminating the linear effect of [image: image542.wmf]2
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and thus running the appropriate regression. The procedure can be described as follows:
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The partial correlation between [image: image550.wmf]1
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Also the partial correlation of [image: image561.wmf]2
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We can also establish relationship between the partial correlation coefficient and the multiple correlation coefficient [image: image565.wmf](
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In stepwise regression procedure one adds variables to the model to maximize the adjusted coefficient of determination[image: image567.wmf](
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Class Activity 5.2. Calculate VIF for the explanatory variables given in farm productivity data and discuss whether all the variables should remain in the model or not.

5.4 Specification Errors

One of the OLS assumptions is that the dependent variable can be calculated as a linear function of a set of specific independent variables and an error term. This assumption is crucial if the estimators are to be interpreted as decent “guesses” on effects from independent variables on the dependent. Violations of this assumptions lead to what is generally known as “specification errors”. One should always approach quantitative empirical studies in the social sciences with the question “is the regression equation specified correctly?”
One particular type of specification error is excluding relevant regressors. This is for example crucial when investigating the effect of one particular independent variable, let’s say education, on a dependent variable, let’s say farm productivity. If one important variable, let’s say extension contact, is missing from the regression equation, one risks facing omitted variable bias. The estimated effect of education can now be systematically over-or understated, because extension contact affects both education and farm productivity. The education coefficient will pick up some of the effect that is really due to extension contact, on farm productivity. Identifying all the right “control variables” is a crucial task, and disputes over proper control variables can be found everywhere in the social sciences. 

Another variety of this specification error is including irrelevant controls. If one for example wants to estimate the total, and not only the “direct”, effect from education on productivity, one should not include variables that are theoretically expected to be intermediate variables. That is, one should not include variables through which education affects productivity. One example could be a specific type of policy, A. If one controls for policy A, one controls away the effect of education on farm productivity that is due to education being more likely to push through policy A. If one controls for Policy A, one does not estimate the total effect of education on farm productivity.

Another specification error that can be conducted is assuming a linear relationship when the relationship really is non-linear. In many instances, variables are not related in a fashion that is close to linearity. Transformations of variables can however often be made that allows an analyst to stay within an OLS-based framework. If one suspects a U-or inversely U-shaped relationship between two variables one can square the independent variable before entering it into the regression model. If one suspects that the effect of an increase in the independent variable is larger at lower levels of the independent variable, one can log-transform the independent variable. The effect of an independent variable might also be dependent upon the specific values taken by other variables, or be different in different parts of the sample. Interaction terms and delineations of the sample are two suggested ways to investigate such matters.

Learning Activity 5.3. Mathematically show how all specification errors lead to endogeneity.

5.5 Nonnormality 

If the error terms are not normally distributed, inferences about the regression coefficients (using t-tests) and the overall equation (using the F-test) will become unreliable.  However, as long as the sample sizes are large (namely the sample size minus the number of estimated coefficients is greater than or equal to 30) and the error terms are not extremely different from a normal distribution, such tests are likely to be robust.  Whether the error terms are normally distributed can be assessed by using methods like the normal probability plot.  The formal tests to detect non-normal errors one can estimate the values of skewness and kurtosis. These values can be obtained from the descriptive statistics. 

Implementing the Bera-Jarque test for non-normal errors 

1. The coefficients of skewness and kurtosis are expressed in the following way: 
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2. The Bera-Jarque test statistics is computed in the following way: 
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The test statistic asymptotically follows a χ2- distribution. 

3. The hypothesis is: 

                          H0: The residuals follow a normal distribution 

                          HA: The residuals do not follow a normal distribution 

4. If W >
[image: image571.wmf]2
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 , reject the null hypothesis 

The problem of non-normal errors often occurs because of outliers (extreme observations) in the data. A common way to address this problem is to remove the outliers. Another, and better way, is to implement an alternative estimation technique such as LAD-regression (Least Absolute Deviation). 

Learning Activity 5.4. Discuss the problem that the non normality of the errors creates in estimation.

5.6 Summary 

In economics, it is very common to see OLS assumptions fail.  How to test failures of these assumptions, the causes of these failures, their consequences and the models to be used when these assumptions fail are important. Hetroscedasticity and autocorrelation lead to inefficient OLS estimates where the former leads to high standard errors and hence few significant variables while the latter leads to small standard errors and hence many significant variables in which both lead to wrong conclusions. High degree of multicollinearity leads to large standard errors and confidence intervals for coefficients tend to be very wide and t-statistics tend to be very small. Hence, coefficients will not be statistically significant. The assumption of normality of the error terms helps us make inference about parameters. Specification errors all leads to endogeneity which can be resolved using IV or 2SLS.

Exercise 5

You are expected to complete the exercises below within a week and submit to your facilitator by uploading on the learning management system.

1. a. What estimation bias occurs when  an irrelevant variable is included in the model? How do you overcome this bias? 

b. What estimation bias occurs when a relevant variable is excluded from the model?   How do you overcome this bias?

2. a. What is wrong with the OLS estimation method if the error terms are hetroscedastic?, Autocorrelated? 

b. Which estimation techniques will you use if your data have problems of hetroscedasticity and autocorrelation? Why?

3. Explain the differences between heteroscedasticity and autocorrelation.  Under which circumstances is one most likely to encounter each of these problems?  Explain in general, the procedure for dealing with each.  Do these techniques have anything in common?  Explain. 

4. a) Define simultaneity. 

b. Show how simultaneity leads to endogeneity. 

c) Give an example from economics where we encounter simultaneity and explain how we can estimate it.

Further Reading Materials

Gujarati, D. N., 2005. Basic Econometrics. McGraw Hill, Fourth edition. 

Maddala, G. S., 2001. Introduction to Econometrics. Third Edition, John Wiley. 
Wooldridge, J.M., 2000. Introductory Econometrics: A Modern Approach.

Topic 6: Limited Dependent Variable Models

Learning Objectives

By the end of this topic, students should be able to:
·  Examine the Linear Probability Model (LPM);

· Identify the weaknesses of the LPM;

· Describe some of the advantages of the Logit and Probit models relative to the LPM;

· Compare the Logit and Probit models; and

· Apply Logit, Probit and Tobit to practical problems in agricultural economics.

Key Terms: 

Dummy variables models, LPM, Logit, Probit, censored and truncated models and Tobit.

Introduction 

Many different types of linear models have been discussed in the course so far. But in all the models considered, the response variable has been a quantitative variable, which has been assumed to be normally distributed. In this Subtopic, we consider situations where the response variable is a categorical random variable, attaining only two possible outcomes. Examples of this type of data are very common. For example, the response can be whether or not a farmer has adopted a technology, whether or not an item in a manufacturing process passes the quality control, whether or not the farmer has credit access, etc. Since the response variables are dichotomous (that is, they have only two possible outcomes), it is inappropriate to assume that they are normally distributed–thus the data cannot be analyzed using the methods discussed so far in the course. The most common method to use for analyzing data with dichotomous response variables is logit and probit models.

6.1 Dummy Dependent Variables
When the response variable is dichotomous, it is convenient to denote one of the outcomes as success and the other as failure. For example, if a farmer adopted a technology, the response is ‘success’, if not, then the response is ‘failure’; if an item passes the quality control, the response is ‘success’, if not, then the response is ‘failure’; if a has credit access, the response is ‘success’, if not the response is ‘failure’. It is standard to let the dependent variable Y be a binary variable, which attains the value 1, if the outcome is ‘success’, and 0 if the outcome is ‘failure’. In a regression situation, each response variable is associated with given values of a set of explanatory variables X1, X2, . . . , Xk. For example, whether or not a farmer adopted a technology may depend on the educational status, farm size, age, gender, etc.; whether or not an item in a manufacturing process passes the quality control may depend on various conditions regarding the production process, such as temperature, quality of raw material, time since last service of the machinery, etc.
When examining the dummy dependent variables we need to ensure there are sufficient numbers of 0s and 1s. If we were assessing technology adoptions, we would need a sample of both farmers that have adopted a technology and those that have not adopted. 

6.1.1 Linear Probability Model (LPM)
The Linear Probability Model uses OLS to estimate the model, the coefficients and t-statistics etc are then interpreted in the usual way. This produces the usual linear regression line, which is fitted through the two sets of observations.
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6.1.1.1 Features of the LPM 
1. The dependent variable has two values, the value 1 has a probability of p and the value 0 has a probability of (1-p).

2. This is known as the Bernoulli probability distribution. In this case the expected value of a random variable following a Bernoulli distribution is the probability the variable equals 1.

3. Since the probability of p must lie between 0 and 1, then the expected value of the dependent variable must also lie between 0 and 1.

6.1.1.2 Problems with LPM
1. The error term is not normally distributed, it also follows the Bernoulli distribution.

2. The variance of the error term is heteroskedastistic. The variance for the Bernoulli distribution is p(1-p), where p is the probability of a success.

3. The value of the R-squared statistic is limited, given the distribution of the LPMs. 

4. Possibly the most problematic aspect of the LPM is the non-fulfilment of the requirement that the estimated value of the dependent variable y lies between 0 and 1.

5. One way around the problem is to assume that all values below 0 and above 1 are actually 0 or 1 respectively

6. An alternative and much better remedy to the problem is to use an alternative technique such as the Logit or Probit models.

7. The final problem with the LPM is that it is a linear model and assumes that the probability of the dependent variable equalling 1 is linearly related to the explanatory variable.

For example if we have a model where the dependent variable takes the value of 1 if a farmer has extension contact and 0 otherwise, regressed on the farmers education level. The probability of contacting an extension agent will rise as education level rises. 

6.1.1.3 LPM model example
The following model of technology adoption (TA) was estimated, with extension visit (EV) and education (ED) as the explanatory variables. Regression using OLS gives the following result.
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The coefficients are interpreted as in the usual OLS models, i.e. a 1% rise in extension contact, gives a 0.76% increase in the probability of technology adoption.

The R-squared statistic is low, but this is probably due to the LPM approach, so we would usually ignore it. The t-statistics are interpreted in the usual way.

6.1.2 The Logit Model
The main way around the problems mentioned earlier is to use a different distribution to the Bernoulli distribution, where the relationship between x and p is non-linear and the p is always between 0 and 1. This requires the use of a‘s’ shaped curve, which resembles the cumulative distribution function (CDF) of a random variable. The CDFs used to represent a discrete variable are the logistic (Logit model) and normal (Probit model).
If we assume we have the following basic model, we can express the probability that y=1 as a cumulative logistic distribution function.
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The cumulative Logistic distributive function can then be written as:
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There is a problem with non-linearity in the previous expression, but this can be solved by creating the odds ratio:
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Note that L is the log of the odds ratio and is linear in the parameters. The odds ratio can be interpreted as the probability of something happening to the probability it won’t happen. i.e. the odds ratio of getting a mortgage is the probability of getting a mortgage to the probability they will not get one. If p is 0.8, the odds are 4 to 1 that the person will get a mortgage.

6.1.2.1 Logit model features
1. Although L is linear in the parameters, the probabilities are non-linear.

2. The Logit model can be used in multiple regression tests.

3. If L is positive, as the value of the explanatory variables increase, the odds that the dependent variable equals 1 increase.

4. The slope coefficient measures the change in the log-odds ratio for a unit change in the explanatory variable.

5. These models are usually estimated using Maximum Likelihood techniques.

6. The R-squared statistic is not suitable for measuring the goodness of fit in discrete dependent variable models, instead we compute the count R-squared statistic.

If we assume any probability greater than 0.5 counts as a 1 and any probability less than 0.5 counts as a 0, then we count the number of correct predictions. This is defined as:
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The Logit model can be interpreted in a similar way to the LPM, given the following model, where the dependent variable is granting of a mortgage (1) or not (0). The explanatory variable is a customer’s income:

The coefficient on y suggests that a 1% increase in income (y) produces a 0.32% rise in the log of the odds of getting a mortgage. This is difficult to interpret, so the coefficient is often ignored, the z-statistic (same as t-statistic) and sign on the coefficient is however used for the interpretation of the results. We could include a specific value for the income of a customer and then find the probability of getting a mortgage.

6.1.2.2 Logit model result
If we have a customer with 0.5 units of income, we can estimate a value for the Logit of 0.56+0.32*0.5 = 0.72. We can use this estimated Logit value to find the estimated  probability of getting a mortgage. By including it in the formula given earlier for the Logit Model we get:
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Given that this estimated probability is bigger than 0.5, we assume it is nearer 1, therefore we predict this customer would be given a mortgage. With the Logit model we tend to report the sign of the variable and its z-statistic which is the same as the t-statistic in large samples.

6.1.3 Probit Model
An alternative CDF to that used in the Logit Model is the normal CDF, when this is used we refer to it as the Probit Model. In many respects this is very similar to the Logit model. The Probit model has also been interpreted as a ‘latent variable’ model. This has implications for how we explain the dependent variable. i.e. we tend to interpret it as a desire or ability to achieve something. 

6.1.4 The models compared
1. The coefficient estimates from all three models are related. 

2. According to Amemiya, if you multiply the coefficients from a Logit model by 0.625, they are approximately the same as the Probit model.

3. If the coefficients from the LPM are multiplied by 2.5 (also 1.25 needs to be subtracted from the constant term) they are approximately the same as those produced by a Probit model.

Learning Activity 6.1. Even though there is no big differences on the results obtained from logit and probit models, explain why the former is preferred to the latter.

6.2 The Tobit model

Researchers sometimes encounter dependent variables that have a mixture of discrete and continuous properties. The problem is that for some values of the outcome variable, the response has discrete properties; for other values, it is continuous. 
6.2.1Variables with discrete and continuous responses 

Sometimes the mixture of discrete and continuous values is a result of surveys that only gather partial information. For example, income categories 0–4999, 5000–9999, 10000-19999, 20000-29999, 30000+. Sometimes the true responses are discrete across a certain range and continuous across another range.  Examples are days spent in the hospital last year or money spent on clothing last year

6.2.2 Some terms and definitions 

Y is “censored” when we observe X for all observations, but we only know the true value of Y for a restricted range of observations. If Y = k or Y > k for all Y, then Y is “censored from below”. If Y = k or Y < k for all Y, then Y is “censored from above”.

Y is “truncated” when we only observe X for observations where Y would not be censored.
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Example 6.1: Non-censoring but truncation 
We observe the full range of Y and the full range of X

Example 6.2:  Censoring from above
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Here if Y ≥ 6, we do not know its exact value
Example 6.3: Censoring from below 
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Here, if Y <= 5, we do not know its exact value.

Example 6.4: Truncation 
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Here if X < 3, we do not know the value of Y.

6.2.3 Conceptualizing censored data 

What do we make of a variable like “Days spent in the hospital in the last year”? For all the respondents with 0 days, we think of those cases as “left censored from below”. Think of a latent variable for sickliness that underlies “days spent in the hospital in the past year”.  Extremely healthy individuals would have a latent level of sickliness far below zero if that were possible.

Possible solutions for Censored Data 

Assume that Y is censored from below at 0. Then we have the following options:

1)  Do a logit or probit for Y = 0 vs. Y > 0.

You should always try this solution to check your results.  However, this approach omits much of the information about Y.
2)  Do an OLS regression for truncated ranges of X where all Y > 0. This is another valuable double-check.  However, you lose all information about Y for wide ranges of X.
3)  Do OLS on observations where Y > 0. This is bad.  It leads to censoring bias, and tends to underestimate the true relationship between X and Y.
4)  Do OLS on all cases. This is usually an implausible model.  By averaging the flat part and the sloped part, you come up with an overall prediction line that fits poorly for all values of X.
Activity 6.2. Consider analyzing factors affecting expenditure on fertilizer. Why do you use Tobit for running such regression. Explain.

An alternative solution for Censored Data 

The Tobit Model is specified as follows:



yi = ( xi + (i

if ( xi + (i > 0
(OLS part)



yi = 0 


otherwise

(Probit part)

The Tobit model estimates a regression model for the uncensored data, and assumes that the censored data have the same distribution of errors as the uncensored data. This combines into a single equation:



E(y | x) = pr(y>0 | x)* E(y | y>0, x)
6.2.4 The selection part of the Tobit Model 

To understand selection, we need equations to identify cases that are not censored.

yi > 0

implies  
( xi + (i > 0

So pr (y>0 | x) = pr ((x + () > 0

So pr (y>0 | x) is the probability associated with a z-score z = ( x / ( 
Hence, if we can estimate ( and ( for noncensored cases, we can estimate the probability that a case will be noncensored! 
6.2.5 The regression part of the Tobit Model 

To understand regression, we need equations to identify the predicted value for cases that are not censored.

E(y) | y > 0 = ( x + ( 

where ( is the slope of the latent regression line and where ε is the standard deviation of y, conditional on x. 

6.2.6 A warning about the regression part of the Tobit Model 

It is important to note that the slope β of the latent regression line will not be the observed slope for the uncensored cases! This is because E (ε) > 0 for the uncensored cases!

For a given value of x, the censored cases will be the ones with the most negative ε. The more censored cases there are at a given value of x, the higher the E (ε) for the few uncensored cases. This pattern tends to flatten the observed regression line for uncensored cases. 
6.2.7 The catch of the Tobit model 

To estimate the probit part (the probability of being uncensored), one needs to estimate β and ε from the regression part. To estimate the regression part (β and ε), one needs to estimate the probability of being uncensored from the probit part. The solution is obtained through repeated (iterative) guesses by maximum likelihood estimation. 
6.2.8 OLS regression without censoring or truncation 

Why is the slope too shallow in the censored model? Think about the two cases where x = 0 and y >3.   In those cases E (() ( 0, because all cases where the error is negative or near zero have been censored from the population. The regression model is reading cases with a strongly positive error, and it is assuming that the average error is in fact zero. As a result the model assumes that the true value of Y is too high when X is near zero.  This makes the regression line too flat.

6.2.9 Why does the Tobit work where the OLS failed? 

When a Tobit model “looks” at a value of Y, it does not assume that the error is zero.  Instead, it estimates a value for the error based on the number of censored cases for other observations of Y for comparable values of X. Actually, STATA does not “look” at observations one at a time.  It simply finds the maximum likelihood for the whole matrix, including censored and noncensored cases.

6.2.10 The grave weakness of the Tobit model 

The Tobit model makes the same assumptions about error distributions as the OLS model, but it is much more vulnerable to violations of those assumptions. The examples I will show you involve violations of the assumption of homoskedasticity.  In an OLS model with heteroskedastic errors, the estimated standard errors can be too small. In a Tobit model with heteroskedastic errors, the computer uses a bad estimate of the error distribution to determine the chance that a case would be censored, and the coefficient is badly biased. 

Class Presentation 6.1: Another model used to analyze participation and level participation is the Heckman two stage procedure (Heckit). Assign some students to present the Heckit model and some other students to compare Tobit with Heckit. 

6.3 Summary 

Binary choice models have many applications in agricultural economics. OLS fails for dependent variables of this nature. So we only use Logit or Probit (safely) for dependent variable of this nature. It is important to recognize that the interpretation of the change in dependent variable for a unit change in the explanatory for these types of models is different from OLS. For Logit, we either use logs of odds ratio or marginal effects, but only marginal effects for a Probit model. O LS also fails when the dependent variable assumes the same value for considerable number of members of the sample and a continuous vale for others. In this case we use what we call a Tobit model and make interpretations using marginal effects.

Exercise 6

You are expected to complete the exercises below within a week time and submit to your facilitator by uploading on the learning management system.

1. The file “part.xls” contains data collected from a sample of farmers. The variables are:

Y: 1 if the farmer adopted rain water harvesting technology (RWHT); zero otherwise

AGE: Age of the farmer in years

EDUC: Education of the farmer in formal years of schooling
FSIZ: Number of members of the household
ACLF: Active labor force in the family in man equivalent
TRAIN: One if farmer has training on RWHT; zero otherwise

CRED: One if farmer has access to credit; zero otherwise

FEXP: Farm experience of the farmer in years
TLH: Total livestock holding in TLU
ONFI: One if the farmer has off/non-farm income; zero otherwise

TINC: Total income from different sources
 (a) Find the mean of the variable y. What does this mean represent?

(b) Estimate a LOGIT model of the decision to participate, with AGE, EDUC, FSIZ, and ACLF as explanatory variables. Interpret the results. Which variables have a significant effect on participation in RWHT?

(c) Using the results of (b), predict the probability of participating in RWHT for a 40-year-old farmer earning income of 1000 Birr.

(d) Using the results of (b), find the age at which the probability of participation in RWHT is maximized or minimized.

(e) Add the following variables to the model estimated in (b) TRAIN, CRED, FEXP, TLH and ONFI. Interpret the value of the coefficient associated with these variables.

(f) Using a likelihood ratio test, test the significance of education in the determination of participation in RWHT.

(g) Estimate (e) using a PROBIT instead of a LOGIT. What differences do you observe?

2a) What are the advantages of using Probit or Logit models over an LPM model?

       b) Suppose you used Logit model in analyzing factors affecting choice for a brand and found the       coefficient of education to be 0.55. How do you interpret it? 

       c) When do typically use Tobit model for estimation?


Further Reading Materials

Gujarati, D. N., 2005. Basic Econometrics. McGraw Hill, Fourth edition. 

Maddala, G. S., 2001. Introduction to Econometrics. Third Edition, John Wiley. 
Wooldridge, J.M., 2000. Introductory Econometrics: A Modern Approach.

Course Summary 

This course is a one semester introductory course to the theory and practice of econometrics. It aims to develop an understanding of the basic econometric techniques, their strengths and weakness. The emphasis of the course is on a valid application of the techniques to real data and problems in agricultural economics. The course will provide students with practical knowledge of econometric modeling and available econometric statistical packages. By the end of this course the students should be able to apply econometric techniques to real problems in agricultural economics. The lectures for this course are traditional classroom sessions supplemented by computer classes. Using actual economic data and problems, the classes will provide empirical illustrations of the topics discussed in the lectures. They will allow students to apply econometric procedures and replicate results discussed in the lectures using econometric software called STATA. 
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