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Abstract 

Coding structures are employed to allow the use of categorical variables in multiple 

regression analysis and other more sophisticated models. The first part of this paper provides a 

basic guide for coding schemes implementation R statistical software. In fact, building the popular 

coding structures in R is easily realized using some embedded functions such as contr.treatment, 

contr.sum, contr.helmert, contr.wec and contr.poly for dummy, effect, reverse helmert, weighted 

effect coding and polynomial contrasts respectively. Also, the interpretation of their output is 

straightforward and only requires knowing the type of comparison being realized, the coefficients 

of assignment and their sign. On the other hand, the second part of this work evaluated the relative 

performance of the popular coding structures: dummy, effect, reverse helmert, weighted effect 

coding, using a Monte-Carlo simulation. The effects of the effect size, the sample size, the number 

of levels of the factor, the type of distribution of the response variable (normality against moderate 

non-normality) and the correction method for Type I error inflation were checked using a per-

contrast (on individual contrasts) performance criterion and an overall (all the contrasts 

simultaneously) performance criterion. Simulations revealed that the correction method used for 

Type I error inflation had no effects on dummy, effect, reverse helmert and weighted effect coding 

per-contrast performance. This performance was only affected by the effect size, the number of 

levels and the type of distribution for all the structures. Furthermore, the overall performance of 

dummy, effect, reverse helmert and weighted effect coding was varying in function of the effect 

size, the number of levels and the type of the distribution. The correction method had a very slight 

effect on weighted effect coding and no influence on the other schemes. Globally, the correction 

method has no influence on the coding schemes performance while the effect size greatly affected 

the performance. The performance of these techniques was also associated with data following a 

normal distribution. No specific pattern was portrayed for the number of levels and the sample 

size. In spite of the fact that all these coding techniques do not imply the same type of comparisons 

and do not have the same internal structure, weighted effect coding was the least influenced as 

compared to the others. 

 

Key words: contrasts, dummy coding, effect coding, weighted effect coding, simulation, 

performance 
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Résumé 

Les structures de codification sont utilisées afin de permettre l’inclusion des variables 

catégorielles pour la régression multiple et d’autres modèles plus sophistiquées. La première partie 

de ce document vise à fournir un guide basique a l’utilisation des structures de codification dans 

le logiciel statistique R. En effet, la définition des structures populaires de codification dans R est 

facilement réalisée en utilisant certaines fonctions intégrées telles que contr.treatment, contr.sum, 

contr.helmert, contr.wec et contr.poly respectivement pour les codifications dummy, de l’effet, 

d’helmert inversée, des effets pondérés et des contrastes polynômiaux. De même, l'interprétation 

de leurs résultats est directe et ne nécessite que la connaissance du type de comparaison réalisé, de 

la technique d'affectation des coefficients et leurs signes. La seconde partie quant à elle a évalué 

la performance relative des techniques de codification dummy, de l’effet, d’helmert inversée et 

des effets pondérés, en utilisant une simulation de Monte-carlo. L’influence de la taille de l’effet, 

de la taille de l’échantillon, du nombre de niveaux du facteur, du type de distribution de la variable 

réponse (normalité contre non normalité) et de la méthode de correction pour l’inflation de l’erreur 

de Type I a été apprécié à l’aide du critère de performance par contraste (contrastes individuels) et 

du critère de performance globale (tous les contrastes simultanément). Les simulations ont révélé 

que la méthode de correction utilisée pour l'inflation de l'erreur de type I n'avait aucun effet sur les 

performances par contraste des schémas de codification dummy, de l’effet, d’helmert inversée et 

des effets pondérés. Cette performance n'était affectée que par la taille de l'effet, le nombre de 

niveaux et le type de distribution pour toutes les structures. De plus, la performance globale des 

codifications dummy, de l'effet, d’helmert inversée et des effets pondérés variait en fonction de la 

taille de l'effet, du nombre de niveaux et du type de distribution. La méthode de correction avait 

un effet très léger sur la structure des effets pondérés et aucune influence sur les autres schémas. 

Globalement, la méthode de correction n’avait aucun effet sur les techniques de codification alors 

que la taille de l’effet influençait grandement la performance. La performance de ces structures 

était aussi associée aux données suivant une distribution normale.  Aucun modèle particulier n'a 

été décrit pour le nombre de niveaux et la taille de l'échantillon. En dépit du fait que toutes ces 

techniques de codification n'impliquent pas les mêmes types de comparaisons et n’ont pas la même 

structure interne, la structure de codification des effets pondérés était la moins influencée par 

rapport aux autres. 

Mots clés : contrastes, codification dummy, codification de l’effet, codification des effets 

pondérés, simulation, performance 
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Introduction 

In many fields of science, economy and arts, the most frequent research question has been 

about identifying the effect of a factor on an outcome or variable of interest. The first statistical 

method widely used to address that question has been the standard analysis of variance (ANOVA) 

which provides the Fisher’s statistic (F) that reflects all possible differences between the means of 

the groups analyzed (Abdi, 2010). Another famous approach is multiple regression analysis 

(MRA) which has spread over the last decades because of its ability of integrating a large set of 

ANOVA models (Davis, 2010; Wendorf, 2004). However, including a categorical factor in an 

MRA requires the use of coding structures to insure the interpretability of the results (Wendorf, 

2004). Once the primary question of determining a factor’s impact on an outcome is solved, the 

next problem is about how and where these effects arise. This new issue has found a useful tool in 

the multiple comparison methods (MCMs), which are used to investigate differences between pairs 

of population means or, more generally, between subsets of population means using sample data 

(Rafter, 2002). A very common MCM related to the coding structures required for an MRA is 

contrasts analysis. Therefore, coding schemes have been linked to ANOVA, MRA, generalized 

linear models and linear mixed effects models. The simple fact of using these statistical models 

implies using coding schemes or contrasts.  

The notion of contrasts is often assimilated to comparisons, since a contrast can be defined 

as a linear combination of coefficients that allow to make comparisons or look for a trend in means 

(Rafter, 2002; Davis, 2010). Various fields have been using these contrasts techniques. Indeed, in 

pharmaceutical studies, treatment-control contrasts have been used to find the optimal number of 

replications and optimal experimental design (Majumdar, 2016). Meanwhile, in drug development 

and dose response studies; pairwise and Helmert contrasts were involved in the identification of 

the minimum effective dose (MED, the lowest dose level with an effect that exceeds that of the 

zero dose control) and allowed the comparison of many active treatments with one control 

treatment (Show-Li, 2007). A study, in designs of experiment with linear mixed effects models, 

has compared several methods for constructing a confidence interval on contrasts of fixed effects 

in a balanced three-factor mixed factorial design with one fixed effect and two random effects 

(Coombs, 2003). 

Nonetheless, the use of coding schemes, their interpretations and the pattern of their 

selection have been fairly reviewed and discussed (Davis, 2010; Thompson, 2006). Some literature 

has been available to help select the desired contrasts. However, contrasts behavior in front of 

some statistical parameters like sample size, the non-normality, the number of levels of the factors 

and even the correction method of Type I error inflation are also important issues for a concerned 

researcher. This issue is poorly discussed in the available literature on contrasts. Actually, sample 

size is a parameter which affects the power of tests and varies from one experiment to another 

depending on aims, means and research area. Moreover, normality is one of the assumptions 

needed for contrasts analysis (Rafter, 2002). This suggests that non-normality could affect 

contrasts performance. Plus, the factors considered can involve many levels to compare. Thus, 

many comparisons involve a possible inflation of Type I error. This latter is known to be an 
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historical issue for MCMs (Abdi, 2007). Though, the literature suggests and offers a few 

approaches for correcting this problem. Three methods have been suggested: Šidàk equation, 

Bonferroni equation and Monte Carlo approach (Abdi & Williams, 2010). Besides, modeling 

implies determining the effect of a categorical predictor on the response variable which implicate 

means differences. This suggests that the size or scale of these effects could impact the 

comparisons made. These key points would allow a better understanding of these structures and 

provide guidance on which coding structure to use regarding the sample size and the number of 

levels of factors considered.  

The present document is the result of a two years training in a Master of Science in 

Statistics, major Biostatistics. It is subdivided in two main parts. The first component aims at 

providing guidance on how to define and interpret the common coding structures available in R 

statistical software. Specifically, it gives the basic knowledge for understanding the techniques, 

how to choose the suitable one for data, use R embedded functions and packages to apply them 

and interpret the output. Meanwhile, the main objective of the second is to assess the relative 

performance of some popular coding structures for contrasts analysis regarding the sample size, 

the number of levels of factors, the method of correction for Type I error inflation, the effect size 

and the distribution of the response variable (moderate non-normality and normality). Its specific 

objectives are (1) assess the relative per-contrast performance of dummy, effect and weighted 

effect coding structures, polynomial and reverse helmert contrasts in terms of the sample size, the 

number of levels of factors, the method of correction for Type I error inflation, the effect size and 

the distribution of the response variable (moderate non-normality and normality) in case of 

unbalanced or balanced design; and (2) assess the overall performance of dummy, effect and 

weighted effect coding structures, polynomial and reverse helmert contrasts in terms of the sample 

size, the number of levels of factors, the method of correction for Type I error inflation, the effect 

size and the distribution of the response variable (moderate non-normality and normality) in case 

of unbalanced or balanced design. 
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Chapter 1. Background 

1 Background 

1.1 Generalities about contrasts 

1.1.1 Definition 

A contrast is a linear combination of coefficients that allows to make comparisons or to 

look for a trend in means (Rafter, 2002; Davis, 2010). For a factor with p number of levels, the 

number of contrasts is p-1. There exist two types: trend and non-trend contrasts. Non-trend 

contrasts investigate the differences among groups or levels of predictors. This first group 

includes: dummy, effect, weighted effect and contrast coding. Conversely, trend contrasts seek for 

a trend of the means or how the means react across levels of the predictor. 

Example 1. For a factor representing groups of people with four levels, contrasts can be designed 

as follows: 

 Contrast coefficients 

Levels C1 C2 C3 

Group 1 -1 -1 3 

Group 2 -1 0 -1 

Group 3 0 1 -1 

Group 4 2 0 -1 

 

Generally, coefficients are either negative or positive and taking integers as coefficients. 

However, they can be decimals according to the coding structure used (for examples refer to 

weighted effect coding and polynomial contrasts). The groups having the same sign are in the same 

chapter or bigger group. The group having 0 as coefficient is not considered in the comparison. 

Here, C1 code for a comparison between the mean of group 4 and the mean of groups 1 and 2. C2 

represents the comparison between the first two groups whereas C3 compares the first group to 

the other groups. 

 

1.1.2 Planned and unplanned contrasts 

Contrasts can be grouped into planned or a priori contrasts and unplanned or post hoc 

contrasts (Abdi & Williams, 2010). A priori or planned contrasts are selected before running the 

experiment. Generally, they reflect the few hypotheses the experimenter wants to test and are 

defined based on literature review. However, a posteriori or unplanned contrasts are decided after 

the experiment has been run. Characteristic of a virgin field investigation, they represent all the 

possible contrasts that can be made explicitly or not and ensure that unexpected results are reliable 

available (Davis, 2010; Thompson 2006; Abdi & Williams, 2010). 
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1.1.3 Orthogonal and non-orthogonal contrasts 

Orthogonal contrasts are uncorrelated contrasts which are individually interpretable. Two 

contrasts are orthogonal or independent if the sum of the products of their coefficients is null. The 

main advantage is that each linear contrast of a set of orthogonal contrasts can be analyzed 

independently from the others. Also, the fact that they are uncorrelated helps minimizing the type 

I error rate.  

The opposite holds for non-orthogonal contrasts which are correlated and messy to interpret. 

They are more complex and assessing the importance of a given contrast conjointly with the other 

contrasts is the main issue. Generally, orthogonal contrasts are preferred. 

Example 2. Considering the example above (Example 1), the orthogonality of contrasts can be 

checked as follows 

 Contrast coefficients Product 

Levels C1 C2 C3 C1*C2 C1*C3 C2*C3 

Group 1 -1 -1 3 1 -3 -3 

Group 2 -1 0 -1 0 1 0 

Group 3 0 1 -1 0 0 -1 

Group 4 2 0 -1 0 -2 0 

Sum 0 0 0 1 -4 -4 

 

 The sum of the products of each pair of contrasts is not null hence the contrasts involved are 

not orthogonal.  

 

1.2 Grand mean and Sample mean 

The grand mean or unweighted mean is the mean of all the means of the levels of a given 

factor. It is computed for balanced designs and used as the intercept for effect and contrast 

coding structures. Conversely, the sample mean or weighted mean, used for unbalanced designs, 

is the mean which is obtained by dividing the sum of all the observations by the sample size. 

𝐺𝑟𝑎𝑛𝑑 𝑀𝑒𝑎𝑛 =
𝑚1 +  𝑚2 + ⋯ + 𝑚𝑝

𝑝
 

(Eq. 1) 

Where 𝑝 is the number of groups or levels of the factor and 𝑚1  to 𝑚𝑝 the means of the groups 1 

to 𝑝 respectively. 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑒𝑎𝑛 =
𝑥1 +  𝑥2 + ⋯ + 𝑥𝑛

𝑛
 

(Eq. 2) 

Where 𝑛 is the number of observations and 𝑥1…𝑥𝑛 the observations of the unbalanced data. 
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Chapter 1. Background 

Example 3. For a factor with four levels, some measurements are recorded for each group subject 

(G1 to G4). The two types of means are computed as follows: 

𝐺𝑟𝑎𝑛𝑑 𝑀𝑒𝑎𝑛 =
4.636 + 4.909 + 2.273 + 5.364

4
= 4.295 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑒𝑎𝑛 =
7 + 9 … + 4 + 0 + 9 … + 4 + 4 + 8 … 5 + 10 + 1

25
=

96

24
= 4 

 

  Balanced design   Unbalanced design 

Observations G1 G2 G3 G4  G1 G2 G3 G4 

1 7 0 4 10  7 0 4 10 

2 9 9 8 1  9 9 8 1 

3 2 5 1 9  2 5 1 - 

4 1 9 0 2  1 9 0 - 

5 1 4 1 2  1 4 1 - 

6 2 1 0 10  2 - 0 - 

7 4 5 0 4  4 - 0 - 

8 9 7 5 6  9 - 5 - 

9 4 4 2 8  4 - - - 

10 6 7 3 6  - - - - 

11 6 3 1 1  - - - - 

Mean 4.636 4.909 2.273 5.364  4.333 5.400 2.375 4.500 

Grand mean 4.295   - 

Sample mean -   4 

 

1.3 Selection of the coding structure 

The popular contrasts coding schemes are: dummy coding, effect coding, contrast coding, 

polynomial contrasts and weighted effect coding. They are detailed in the next section of this 

document.  A decision tree has been proposed for selecting the type of contrasts to use (Figure 1). 

This tree decision from Davis (2010) has been modified to add weighted effect coding which has 

recently been developed (Grotenhuis, 2016). It is essential to consider the literature available on 

the research topic, decide if we are interested in trends or means comparisons and construct the 

comparisons to verify (Figure 1). Plus, it is vital to the researcher to know which questions should 

be answered. 
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Chapter 1. Background 

 

Figure 1.  Decision tree for determining the appropriate coding structure (adapted from Davis, 2010)
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Chapter 1. Background 

1.4 Correction of Type I error inflation 

The Type I error is the probability of the event “reject the null hypothesis when it is true”. 

Generally, this probability is called level of significance or α (alpha) and set to 0.05 or 5 %. This 

event is assumed to be rare. A large number of tests on the same dataset increase its occurrence 

one could find significance where there is not. This phenomenon is called inflation. Some 

correction methods have been developed to solve this problem. Two different meanings can be 

assigned to α (Abdi, 2007): 

 the probability of making a Type I error for one given test, testwise alpha or alpha per test 

denoted 𝛼[𝑃𝑇]; 

 the probability of making at least one Type I error for a family of tests, familywise or 

experimentwise alpha or alpha per family of tests represented by 𝛼[𝑃𝐹]. 

The probability of making at least one Type I error for a family of c contrasts is given by: 

𝛼[𝑃𝐹] = 1 −  ( 1 −  𝛼[𝑃𝑇]) 𝐶  (Eq.3) 

Where 𝐶 is the number of contrasts (number of levels of the factor - 1). Some correction methods 

for independent tests are briefly presented below. 

1.4.1 Šidàk correction 

It shows that 𝛼[𝑃𝑇] values must be adapted for each test to reach a given 𝛼[𝑃𝐹]. Its 

formula is derived from the previous formula (Eq.1). 

 For dependent tests (non-orthogonal contrasts) 

𝛼[𝑃𝐹] ≤ 1 −  ( 1 −  𝛼[𝑃𝑇])𝑐  (Eq.4) 

 For independent tests (orthogonal contrasts) 

𝛼[𝑃𝑇] = 1 −  ( 1 −  𝛼[𝑃𝐹]) 1/𝐶  (Eq.5) 

1.4.2 Bonferroni correction 

This formula also is a simpler approximation of the Šidàk equation. Generally, the two 

methods yield close values.  Bonferroni approximation is given by: 

 For dependent tests (non-orthogonal contrasts) 

𝛼[𝑃𝐹] < 𝑐 𝛼[𝑃𝑇]  (Eq.6) 

 For independent tests (orthogonal contrasts) 

𝛼[𝑃𝑇] ≈
𝛼[𝑃𝐹]

𝑐
 

 (Eq.7) 
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Chapter 1. Background 

Bonferroni and Šidàk equations are linked to each other by the inequality given as: 

 For dependent tests (non-orthogonal contrasts) 

𝛼[𝑃𝐹] ≤ 1 −  ( 1 −  𝛼[𝑃𝑇])𝑐 < 𝑐 𝛼[𝑃𝑇] (Eq.8) 

 For independent tests (orthogonal contrasts) 

𝛼[𝑃𝑇] = 1 −  ( 1 −  𝛼[𝑃𝐹])
1
𝐶 ≥  𝛼[𝑃𝑇] ≈

𝛼[𝑃𝐹]

𝑐
 

(Eq.9) 

 

1.4.3 Monte-Carlo technique correction 

This technique consists of running a simulated experiment many times using random 

data, with the aim of obtaining a pattern of results showing what would happen just on the basis 

of chance. The formulas used here are: 

𝛼[𝑃𝑇] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑠
 

(Eq.10) 

 

𝛼[𝑃𝐹] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠
 

(Eq.11) 
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Chapter 2. On the use and interpretation of the popular coding structures in R statistical software 

2 On the use and interpretation of the popular coding structures in R 

statistical software  

2.1 Data and methods 

Three datasets are used in this section. The first dataset, bcmort, from the package ISwr 

(Dalgard, 2015) is a Danish study on the effect of screening for breast cancer. The number of breast 

cancer has been reported for women in different age groups (6 groups) and cohort. Four cohorts 

were collected. The “study group” consists of the population of women in the appropriate age 

range in Copenhagen and Frederiksberg after the introduction of routine mammography screening. 

The “national control group” consisted of the population in the parts of Denmark in which routine 

mammography screening was not available. These two groups were both collected in the years 

1991-2001. The “historical control group” and the “historical national control group” are similar 

cohorts from 10 years earlier (1981-1991), before the introduction of screening in Copenhagen 

and Frederiksberg. The study group comprises the entire population, not just those accepting the 

invitation to be screened. It is a balanced data that will be used for all the coding structures except 

weighted effect coding. 

The unbalanced data is an embedded R dataset, chickwts in the package datasets (R Core 

Team, 2017). The data present the results of an experiment conducted to measure and compare the 

effectiveness of various feed supplements on the growth rate of chickens. Newly hatched chicks 

were randomly allocated into six groups, and each group was given a different feed supplement. 

Their weights in grams after six weeks are given along with feed types. The particular case of trend 

or polynomial contrasts require a quantitative factor with equally spaced levels. The dataset coking 

of the package ISwR. It contains the time to coking in an experiment where the oven width and 

temperature were varied. 

For simplicity purposes, a linear additive model is used for all the coding structures with 

the function lm of the package stats (R Core Team, 2017). The coding structures can be specified 

by three different methods. Though, only one is presented in this document, the specification inside 

the model. The others can be found in the global version of the R code used. However, the output 

is the same for all of them.  

 

2.2 Coding structures for non-trend contrasts 

2.2.1 Dummy coding  

Also called treatment contrasts, it is the most common structure used and the basic coding 

structure in R. It tests the effects of one group (base or reference) against all other groups, for 

instance a control group against multiple treatment groups. The coding only uses 1 and 0. The 

reference should be well defined and allow useful comparisons. This scheme is used for balanced 

and unbalanced data.  
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 Advantages: Interpretation is simple. It especially works well with nominal and more 

specifically dichotomous data. 

 Limitations: Its ability to make interpretations is limited and can result erroneous tests of 

significance for multi-factor designs. 

R code and output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant. 

Interpretation 

For dummy, effect and weighted coding structures, the estimates except the intercept 

represent the difference between the mean of the group considered and the intercept. The null 

hypothesis of the equivalent t test states that this difference is equal to 0. If the probability value 

(last column in the output) is greater than 0.05 then the difference is significantly equal to 0. Thus, 

there is no significant difference between the terms involved in that difference of means. Each 

column given by displaying contrasts represent the terms of the summary output. For example, the 

column “55-59” of contrasts(age) is represented by “age55-59” in the summary of the model. 

# To see the contrasts the software uses for the factors, just use the following code 
contrasts(age)  ## 1 represents the group that is compared to the reference 
 55-59 60-64 65-69 70-74 75-79 

50-54 0 0 0 0 0 

55-59 1 0 0 0 0 

60-64 0 1 0 0 0 

65-69 0 0 1 0 0 

70-74 0 0 0 1 0 

75-79 0 0 0 0 1 

 
## As dummy coding also called treatment contrasts is the default, no need to specify 
model.dc <- lm(bc.deaths ~ age , data = bcmort) 
## model.dc <- lm(bc.deaths ~ age , contrasts = list(age = "contr.treatment"), data = 
bcmort) ## the argument “contrasts” allows to specify the desired structure directly in 
the model, here contr.treatment is the function needed. 
 
summary(model.dc) 
 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 56 101.22 0.553 0.587 ns 

age55-59 183 143.15 1.278 0.217 ns 

age60-64 225.5 143.15 1.575 0.133 ns 

age65-69 239.75 143.15 1.675 0.111 ns 

age70-74 230.75 143.15 1.612 0.124 ns 

age75-79 64.25 143.15 0.449 0.659 ns 
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Here, the intercept represents the mean of the reference group here 50-54. No probabilities 

are significant meaning that there is no significant difference between each of the other 5 groups 

and the reference 50-54. The mortality of the other groups is then not different from the group of 

women between 50 and 54 years old. 

2.2.2 Effect coding  

The coding process is the same as in dummy coding except that the last group receives a “-1” 

for all contrasts. It is used with balanced data. Also, this structure is very similar to contrast coding 

(next structure), identical in the two-category situation. The purpose is to compare each group 

mean to the grand mean of all the groups. 

 Advantages:  It allows to test mean differences between groups by using simple contrasts. 

Interpretation is easy. 

 Limitations: It only tests differences between simple contrasts and does not allow to test 

hypotheses for complex contrasts. 

 

R code and output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

## Define the effect coding structure only for age. cohort keeps the dummy coding 
contr.ec <- contr.sum(6)  ## 6 is the number of levels of the factor 
## Assign the matrix as contrasts of the factor age 
contrasts(age) <- contr.ec 
print(contr.ec)  ## to visualize the coefficients 
 55-59 60-64 65-69 70-74 75-79 

50-54 1 0 0 0 0 

55-59 0 1 0 0 0 

60-64 0 0 1 0 0 

65-69 0 0 0 1 0 

70-74 0 0 0 0 1 

75-79 -1 -1 -1 -1 -1 

## Insert the new coding variable in the model 
model.ec1  <- lm(bc.deaths ~ age , data = bcmort, contrasts = list(age = "contr.sum")) 
summary(model.ec1) 
 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 213.21 41.32 5.16 6.6E-05 *** 

age1 -157.21 92.4 -1.701 0.106 ns 

age2 25.79 92.4 0.279 0.783 ns 

age3 68.29 92.4 0.739 0.469 ns 

age4 82.54 92.4 0.893 0.383 ns 

age5 73.54 92.4 0.796 0.436 ns 
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Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

 

Interpretation 

The intercept is the grand mean of all the groups of age which is significantly non null. The 

probabilities are not significant implying that each of the groups is not significantly different from 

the grand mean. The breast cancer mortality of each group is not different from the average 

mortality. 

2.2.3 Contrast coding 

This structure is an extension of dummy coding used in balanced designs which tests specific 

hypotheses of interest between group means. The sum of the contrast coefficients is null. It 

involves two types of contrasts: orthogonal and non-orthogonal. This structure comprises other 

structures, the most common are presented in Table 1. 

 Advantages: Interpretation of main effects and interactions is fairly straightforward and 

accurate. 

 Limitations: For unbalanced designs or non-orthogonal designs, interpretations can 

become confounded even if ways to deal with it exists. 

Table 1. Summary of the most common categories of contrast coding 

Contrast  Use 

Simple  Pairwise contrasts. Compare means of each 

level with the mean of a reference category 

(any level, but usually first or last level) 

Repeated contrast Pairwise contrasts. Compare the mean of 

each level to the mean of the immediately 

following level. 

Helmert Compare the mean of each level with the 

mean of the subsequent levels starting by 

the last, the penultimate level with the last, 

the level before penultimate with the 

average of the last and penultimate, and so 

on. 

Reverse Helmert Reverse of Helmert contrast. Compare the 

mean of the second level with the first, the 

third with the average of the first two, and 

so on.  
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R code and output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** 

significant at 1 %; * significant at 5 %; ns not significant 

Interpretation 

The intercept is the grand mean of all the groups of age which is significantly non null. The 

advantage of contrast coding is the ability to deal with complex contrasts. Generally, the groups 

having coefficients of the same sign are in the same big group and are compared to those in the 

other group having the opposite sign. This holds for contrasts coding structures and polynomial 

contrasts. 

Here, the term “age1” shows that there is no significant difference between mortalities of 

women in 50-54 and 55-59 years old. Meanwhile, “age2” reveals the same conclusion for the 

women in 60-64 and the average of the previous two groups.  “age3” brings out the same 

conclusion too but for women in 65-69 and the average of the three preceding groups. This is the 

process followed till the last comparison.  

 

2.2.4 Weighted effect coding 

Variation of effect coding, it has been designed for groups with unequal size or unbalanced 

designs. The effect for each category represents the deviation of that category from the weighted 

mean (which corresponds to the sample mean). 

## Example of reverse Helmert contrasts 
model.cc.rh <- lm(bc.deaths ~ age , contrasts = list(age = "contr.helmert"), data = bcmort) 
summary(model.cc.rh) 
 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 213.21 41.32 5.16 6.6E-05 *** 

age1 91.5 71.57 1.278 0.217 ns 

age2 44.67 41.32 1.081 0.294 ns 

age3 25.9 29.22 0.886 0.387 ns 

age4 13.74 22.63 0.607 0.551 ns 

age5 -18.59 18.48 -1.006 0.328 ns 

 
contrasts(age) 
 55-59 60-64 65-69 70-74 75-79 

50-54 -1 -1 -1 -1 -1 

55-59 1 -1 -1 -1 -1 

60-64 0 2 -1 -1 -1 

65-69 0 0 3 -1 -1 

70-74 0 0 0 4 -1 

75-79 0 0 0 0 5 
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 Advantages:  It allows comparisons for unbalanced data. It is a type of dummy coding to 

facilitate the inclusion of categorical variables in generalized linear models (GLM). 

 Limitations: It does not test complex contrasts like contrast coding.  

R code and output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant. 

 

Interpretation 

The intercept here represents the sample mean. The estimates are the deviations of the 

groups means from that sample mean. The group specified in omitted in the code is like the 

reference group for dummy coding. Although, the intercept is different from the dummy coding 

intercept (sample mean against reference group mean). All the feed types groups except the meat 

meal were significantly different from the sample mean which weight was the sample mean plus 

almost 16. 

 

contr.wec.feed <- contr.wec(feed, omitted = "casein") 
print(contr.wec.feed) 
 horsebean linseed meatmeal soybean sunflower 

1 -0.8333333 -1 -0.916667 -1.1667 -1 

2 1 0 0 0 0 

3 0 1 0 0 0 

4 0 0 1 0 0 

5 0 0 0 1 0 

6 0 0 0 0 1 
 
model.wec <- lm(weight ~ feed, contrasts = list(feed = contr.wec.feed), data = chickwts) 
summary(model.wec) 
 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 261.31 6.51 40.143 < 2E-16 *** 

feedhorsebean -101.11 16.08 -6.289 3.1E-08 *** 

feedlinseed -42.56 14.43 -2.949 0.00443 ** 

feedmeatmeal 15.6 15.2 1.026 0.30867 ns 

feedsoybean -14.88 13.13 -1.133 0.26139 ns 

feedsunflower 67.61 14.43 4.684 1.5E-05 *** 
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2.3 Coding structure for trend contrasts or polynomial contrasts 

The target here is to check if there is any trend or test whether the means across the levels form 

a certain pattern such as a line or a parabola. The scheme requires our predictor to quantitative 

with levels equally spaced. 

 Advantages:  It allows checking for effects of treatment or any other type of data that may 

perform in a manner that is not simply on a line. 

 Limitations: The interpretation can be tricky. 

 

R code and output 

 

 

 

 

 

 

 

 

 

 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** 

significant at 1 %; * significant at 5 %; ns not significant. 

 

Interpretation 

The intercept, the grand mean of all the groups of age, is significantly non null. “.L” and 

“.Q” are “linear” and “quadratic” respectively. Here, the trend across the groups is linear. This 

implies that the average coking time needed by the ovens of width 4 and 8 together is significantly 

different from the one needed by the oven of width 12. 

contr.poly(3) 
 .L .Q 

4 -0.7071068 0.40825 

8 -7.8505E-17 -0.8165 

12 0.7071068 0.40825 

 
model.poly <- lm(time ~ width , contrasts = list(width = "contr.poly", temp = "contr.poly") 
            , data = chickwts) 
summary(model.poly) 
 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 6.0333 0.3117 19.355 5.1E-12 *** 

width.L 4.5137 0.5399 8.36 5E-07 *** 

width.Q -0.3878 0.5399 -0.718 0.484 ns 
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3 Simulation study 

3.1 Simulation design 

3.1.1 Factors of interest 

Among the popular coding techniques mentioned, dummy coding, effect coding, weighted 

effect coding, and reverse Helmert contrasts were taken into account. Šidàk and Bonferroni 

correction methods were used because of their easier application than Monte-Carlo. All the factors 

considered are listed in Table 2.  

Balanced data (where the levels have the same sample size) was generated and applied for 

dummy coding, effect coding and reverse helmert. Meanwhile, unbalanced data was created for 

dummy coding and weighted effect coding. For this latter, we only considered that the first two 

levels were different from the others with the first being the most weighted (Table 3). The smallest 

sample size was set to 48 in order to have at least 8 replications for each level of the factor. Then, 

a step of 24 was used to get a sequence from 48 to 168. The number of levels and sample size 

modalities had been selected using the least common multiple property. 

The robustness of the contrasts structures against non-normality has been checked by 

varying the distribution of the response variable. The particular case of moderate non-normality 

was obtained through a Chi-square distribution with low degrees of freedom (Table 2). In addition, 

a standard normal distribution was generated as a control for comparison purposes.  

 

Table 2. Summary of the factors to be tested 

Factors Levels 

Number of levels of the factor (p) 3, 4,6 

Sample size (n)  48, 72, 96, 144, 168 

Effect size (E) 1, 8, 20, 50 

Distribution of the response variable (mu) 

 
𝒳2(5), 𝒳2(10), 𝒳2(20), 

𝒩(0,1) 

Correction for Type I error inflation (mc) - no correction 

- Šidàk 

- Bonferroni  

The first three factors are quantitative while the remaining are qualitative.  

Number of combinations: Data generation used the combination of number of levels (4), sample 

size (5), distribution type of the response variable (4) and effect size (4). This yields a total of 320 

configurations.    

Number of replications: 3000 random generations.  
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Table 3. Levels ratio for unbalanced data according to the number of levels 

Number of levels (p) Level ratio 

𝑝 = 3 3:2:1 

𝑝 = 4 3:2:1:1 

𝑝 = 6 3:2:1:1:1:1 

 

3.1.2 Simulation plan 

The simulation design was implemented according to the following steps: 

Step 1. A linear model was considered, in matrix notation as follows: 

 

𝑌 = 𝛽0 + 𝑋𝛽 +  𝜀 (Eq.10) 

 

Where 𝑌 is the response or dependent variable, 𝛽0 the intercept, 𝛽 the vector of coefficients, 𝑋 the 

matrix of observations of the independent variable and 𝜀 the residuals.  

The independent variable 𝒙 was generated using a multinomial distribution with parameters 

the proportions given by the level ratio for each number of levels (Table 4) and the different sample 

sizes i.e. 𝑥 ~ 𝑀𝑁𝑂𝑀𝐼𝐴𝐿 (𝑞1, 𝑞2 … , 𝑛1).  𝑋  was obtained using x. 

Step 2. The residuals were generated by creating vectors of data following 3 different types of 

distributions. The case of moderate non-normality has been checked using chi-square distributions 

with degrees of freedom 5, 10 and 20 respectively (𝒳2(5), 𝒳2(10), 𝒳2(20)) while the normality 

case was represented by a standard normal distribution (𝒩(0,1)). For a chi-square distribution, 

the mean and the degree of freedoms are the same. 

Step 3. As contrasts make comparisons among means of levels of the factor, it is essential to know 

by default which levels are significantly different or not in order to check the performance of the 

structure. This prior helped in finding if the contrasts were really detecting the differences 

purposefully set by default. Thus, some prior values were assigned to the coefficients vector (Table 

4). Indeed, it allowed to define by default the differences or comparisons where probabilities were 

expected to be significant. Furthermore,  𝛽 was a function of the effect size (𝐸). This latter was 

varying in order to check if the results obtained could be influenced by the size of the coefficients 

in 𝛽.  
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Table 4. Values assigned by default to the parameter  𝛽 considered for all the coding structures.  

Number of levels  𝛽 

𝑝 = 3 [-E,-E,E]*, [-E,0,E]** 

𝑝 = 4 [-E,-E,0,2E] 

𝑝 = 6 [-3E,-3E,0,2E,2E,2E] 

 

The notation [-E,-E,E] has been used to represent a vector which has a number of elements equal 

to the number of levels considered. Also, the notation 2E represents E multiplied by 2. Plus, the 

values have been defined to match the comparison or contrasts of each coding structure. Defining 

only one parameter for all the coding structures for p = 3 was quite tricky Thus, two parameters 

were defined. The vector marked with “*” was used for reverse helmert and the one followed by 

“**” for dummy coding (Table 4).  

 

Step 4.  To ensure that the probability of rejecting the null hypothesis when it is true is at most 

0.05, the familywise level of significance was set to 0.05 so 𝛼[𝑃𝐹] = 0.05 . Then, the level of 

significance per test or comparison was computed using specific equations (as defined in the first 

section, Background, of the present document, Table 5). 

Table 5. Levels of confidence used per comparison  

 No correction Bonferroni Šidàk 

Level of 

significance 

𝜶[𝑷𝑻] 

𝛼[𝑃𝑇] = 0.05 
𝛼[𝑃𝑇] ≈

𝛼[𝑃𝐹]

𝑐
 

𝛼[𝑃𝑇] = 1 −  ( 1 −  𝛼[𝑃𝐹]) 1/𝐶 

𝑐 is the number of contrasts involved in the analysis. 

Step 5.  For the 4 types of the response variable’s distribution, 𝛽0 took as default value 0.  

Moreover, 𝑌 was computed using Eq.10 for standard normal distribution. For the chi-square 

distributions, the response was generated following the equation: 

 𝑌 =     𝑋𝛽 +  𝜒2(𝛽0)  

𝑌 = 𝛽0 + 𝑋𝛽 − 𝜇 +  𝜒2( 𝜇)  

𝑌 =     (𝛽0 −  𝜇) + 𝑋𝛽 +  𝜒2( 𝜇) (Eq.11) 

Where 𝜇 is the degree of freedom/mean of the chi-square distribution. 

Step 6. Each coding structure was applied to either balanced or unbalanced data (Table 7). Note 

that dummy coding was used for the two types (balanced and unbalanced).  

Step 7. For each contrast coding, the true significant probabilities (probabilities detecting the 

significant contrasts as set by default) were checked comparing the probabilities from the 
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simulation to the one known by default (Step 3). For a given structure, the number of these 

probabilities was stored and denoted 𝑚. 

Two performance criteria have been defined and used: the per-contrast performance 𝑘1  and the 

overall performance of the coding structure 𝑘2 .  

 The per-contrast performance criterion 𝑘1  is defined as the ratio between the number of 

true significant probabilities and the number of contrasts. The formula is as follows: 

𝑘1 = 𝑚

𝑝 − 1
 

(Eq.12) 

Where 𝑚 is the number of true significant probabilities (probability < level of significance as 

default) for the type of contrast, 𝑝 the number of levels then 𝑝 − 1 the number of contrasts.  

 𝑘1 lies between the 0 and 1. When it is close to 1, it implies that the contrast coding performs well 

at the level of individual contrasts or comparisons. The opposite suggests that the contrast used is 

not performant.  

 The overall performance criterion 𝑘2 is made to take only two values: 0 if the coding 

structure has all the true significant probabilities for each of its contrasts, 1 otherwise. Thus, 

the structure globally performs well if 𝑘2 = 1 and does not if 𝑘2 = 0. As this criterion 

takes into account all the contrasts together, the level of significance to use is the 

familywise level of significance. However, the two other levels mentioned in Step 4 was 

also used just to check if any difference raises when the familywise error becomes smaller. 

Step 8. The process of computing performance criteria for each combination of the factors being 

tested was replicated 3000 times. This output was used to compute the mean of each performance 

criterion. They are presented in a table for each combination of sample size, number of levels, 

effect size and the distribution of the response variable. 

Table 6. Coding structures under investigation in R 

Coding scheme Type of data Syntax in R Package  

Dummy Balanced and 

unbalanced 

contr.treatment stats (R Core Team, 2017) 

Effect coding Balanced contr.sum stats (R Core Team, 2017) 

Weighted effect coding Unbalanced contr.wec wec (Grotenhuis,2016) 

Reverse Helmert Balanced contr.helmert stats (R Core Team, 2017) 

 

 

3.1.3 Data analysis 

Each performance criterion was independently modeled for each coding structure. 

Moreover, these models only assessed the additive effects of the sample size (n), the number of 
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levels (p), the effect size (E), the distribution of the response variable (mu) and the correction 

method for type I error inflation (mc). The per-contrast performance criterion (k1) was modeled 

following two steps because of the nature of the data. Indeed, k1 was constituted of proportions 

but with many zeros. The first step used a generalized linear model with a binomial structure for 

errors (using glm, package stats (R Core Team, 2017)) to deal with the many zeros in the data in 

order to know whether the structure is performant or not regarding the predictors. Then, the part 

of the data non null (with k1 # 0) was analyzed using a generalized linear model with a gamma 

structure for errors. However, weighted effect coding per-contrast performance was only modeled 

using the second step. Meanwhile, a generalized linear model with a binomial family was used to 

assess the additive effects of the predictors involved in the study on the overall performance 

criterion (k2).  

The simplification of the models was done using a stepwise selection based on Akaike 

Information Criterion (AIC) actually with the function stepAIC of the package MASS (Venables, 

2002). Furthermore, the best model selection was also based on the AIC using the package bbmle 

(Bolker & R Core Team, 2017). Furthermore, an ANOVA on the best model was used to assess 

the global effects of the predictors.  
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3.2 Results  

The results have been presented with many tables from the output of the statistical models used. 

The terms of these models or predictors in the tables considered are coded as showed in Table 7. 

 

Table 7.Terms of models and their meaning for all the tables of the section Results 

Predictors Meaning 

Intercept Effect size = 1, sample size = 48, number of levels = 3, 

Normal standard distribution (mean = 0), method of correction = no correction 

E8 Effect size = 8 

E20 Effect size = 20 

E50 Effect size = 50 

n72 Sample size = 72 

n96 Sample size = 96 

n144 Sample size = 144 

n168 Sample size = 168 

p4 Number of levels of the factor = 4 

p6 Number of levels of the factor = 6 

mu5 Chi-square distribution with mean = 5 

mu10 Chi-square distribution with mean = 10 

mu20 Chi-square distribution with mean = 20 

mcbonf Method of correction = Bonferroni 

mcsid Method of correction = Šidàk 

 

3.2.1 Per-contrast relative performance of the coding structures  

The per-contrast relative performance tells about the success of the coding technique in 

being right at finding the real output (difference or not) of its individual contrasts. Its assessment 

was done in two steps because of the great number of zeros observed in the per-contrast criterion 

except for weighted effect coding which was only analyzed in the second step.  

The first step revealed that the probability of effect and reverse helmert coding being 

performant for each of their individual contrasts was influenced by the effect size, the sample size, 

the number of levels and the type of the distribution (P > 0.05; Table 8). Although, dummy coding 

probability, when used in unbalanced design, was not affected by any of the predictors (P < 0.05; 

Table 8), it was varying depending on the effect size, the sample size and the type of the 

distribution when applied to balanced data (P > 0.05; Table 8). Moreover, the correction method 

used for Type I error inflation has no effect on all the structures probability of being performant 

(P < 0.05; Table 8). 
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Table 8. ANOVA on a logistic model to test the effects of effect size (E), sample size (n), number 

of levels (p), type of distribution (mu) and the method of correction (mc) on the occurrence of 

performance of the coding structures. Only probability values are recorded in the table 

Coding structure Design type E  n  p  mu  mc   

Dummy coding balanced 2.82e-14 *** 0.008 ** -  8.04e-04 *** -  

Dummy coding unbalanced -  -  -  -  -  

Effect coding balanced 8.44e-07 *** 0.014 * 0.000 *** 1.71e-04 *** -  

Reverse helmert balanced 3.37e-06 *** 0.001 *** 0.008 ** 5.23e-04 *** -   

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

On the other hand, the second step showed that the method of correction has no effect on the 

coding structures performances as compared to the effect size, number of levels and the type of 

distribution which were influencing the per-contrast performances variation of all the coding 

structures (Table 9). Only, the performances of dummy and reverse helmert schemes were 

depending on the sample size (Table 9).  

Table 9. ANOVA on a gamma model to test the effects of effect size (E), sample size (n), 

number of levels (p), type of distribution (mu) and the method of correction (mc) on the per-

contrast performance of the coding structures. Only probability values are recorded in the table. 

Coding structure Design type E  n  p  mu  mc  

Dummy coding balanced < 2.2e-16 *** 2.53e-05 *** 0.01822 * < 2.2e-16 *** -  

Dummy coding unbalanced < 2.2e-16 *** -  0.000 *** < 2.2e-16 *** -  

Effect coding balanced < 2.2e-16 *** -  0.000 *** < 2.2e-16 *** -  

Reverse helmert balanced < 2.2e-16 *** 1.72e-05 *** 0.000 *** < 2.2e-16 *** -  

Weighted effect coding unbalanced < 2e-16 *** -  < 2e-16 *** 0.00154 *** -  

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 
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3.2.2 Overall relative performance of the coding structures  

The overall relative performance informs on the ability or success of the coding scheme in 

finding the significant differences/similarities for contrasts or comparisons provided that they are 

really different/similar. Then, the structure is either performant or not.  

For all the coding structures except weighted effect coding, the performance of the coding 

structures while considering all the contrasts involved (k2) was mainly affected by the effect size, 

the number of levels and the type of the distribution (P > 0.05; Table 10). Plus, the correction 

method used for Type I error inflation has no effect on this performance (P > 0.05 or not included 

in the best model; Table 10). Weighted effect coding was only affected by the correction method 

and the number of levels (P < 0.05; Table 10). 

 

Table 10.  ANOVA on a logistic model to test the effects of effect size (E), sample size (n), number 

of levels (p), type of distribution (mu) and the method of correction (mc) on the overall 

performance of the coding structures. Only probability values are recorded in the table 

Coding structure Design 

type 

E n p mu  mc 

Dummy coding balanced < 2.2e-16 *** 0.111 ns 0.002 *** 1.38E-15 *** 0.105 ns 

Dummy coding unbalanced 3.22E-05 *** 0.000 *** < 2.2e-16 ** 1.63E-08 *** -  

Effect coding balanced < 2.2e-16 *** 0.000 *** 0.000 *** 1.03E-13 *** -  

Reverse helmert balanced < 2.2e-16 *** -  0.000 *** 1.10E-10 *** -  

Weighted effect coding unbalanced 0.133 ns 0.074 ns 0.000 *** -  0.041 * 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

 

 Dummy coding 

Dummy coding (DC), for unbalanced and balanced designs, with an effect size greater than 1 

was slightly more likely to be performant than the one with the effect size equal 1 (Table 11 and 

12).  The probability of DC (balanced) being performant when used with moderate non-normal 

data was lesser than the one when dealing with normal data while this was the opposite for DC 

(unbalanced) (Table 11 and 12). The structure was performing lesser for n = 86 and a little more 

for p = 6 as compared to the references n = 48 and p = 3 respectively. Meanwhile, DC (unbalanced) 

with n = 168 and p = 6 was more successful than the reference. 
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Table 11. Logistic regression model for the overall performance of Dummy coding for balanced 

designs with independent variables: effect size (E), sample size (n), number of levels (p), type of 

distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds ratio lower 85%CI 

limit 

upper 85% CI 

limit 

Prob. 

Intercept 0.783 0.783 0.688 0.515 0.824 0.036 * 

E8 2.070 2.070 0.888 0.827 0.831 0.000 *** 

E20 2.854 2.854 0.846 0.808 0.868 0.000 *** 

E50 2.854 2.854 0.846 0.808 0.868 0.000 *** 

n72 -0.230 -0.230 0.443 0.304 0.580 0.448 ns 

n86 -0.781 -0.781 0.314 0.202 0.450 0.008 ** 

n144 -0.084 -0.084 0.477 0.333 0.624 0.758 ns 

n168 -0.230 -0.230 0.443 0.304 0.580 0.448 ns 

p4 -0.113 -0.113 0.472 0.358 0.587 0.635 ns 

p6 -0.783 -0.783 0.314 0.224 0.418 0.001 *** 

mu5 -2.063 -2.063 0.113 0.062 0.188 0.000 *** 

mu10 -2.063 -2.063 0.113 0.062 0.188 0.000 *** 

mu20 -2.188 -2.188 0.101 0.055 0.171 0.000 *** 

mcbonf 0.421 0.421 0.604 0.483 0.706 0.068 ns 

mcsid 0.421 0.421 0.604 0.483 0.706 0.068 ns 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

Table 12.   Logistic regression model for the overall performance of Dummy coding for unbalanced 

designs with independent variables: effect size (E), sample size (n), number of levels (p), type of 

distribution (mu) and the method of correction (mc) 

Predictors 
Estimates 

Standard 

error 
Odds ratio 

lower 85%CI 

limit 

upper 85% CI 

limit 
Prob. 

Intercept -5.237 -5.237 0.005 0.001 0.022 0.000 *** 

E8 1.815 1.815 0.860 0.705 0.844 0.000 *** 

E20 3.217 3.217 0.861 0.888 0.887 0.000 *** 

E50 3.217 3.217 0.861 0.888 0.887 0.000 *** 

n72 0.000 0.000 0.500 0.258 0.741 1.000 ns 

n86 -0.814 -0.814 0.307 0.134 0.552 0.123 ns 

n144 -0.684 -0.684 0.335 0.150 0.585 0.185 ns 

n168 -4.002 -4.002 0.018 0.004 0.060 0.000 *** 

p4 -15.806 -15.806 0.000 0.000 1.000 0.887 ns 

p6 6.788 6.788 0.888 0.886 1.000 0.000 *** 

mu5 -3.066 -3.066 0.045 0.013 0.123 0.000 *** 

mu10 -2.265 -2.265 0.084 0.031 0.230 0.000 *** 

mu20 -2.854 -2.854 0.050 0.015 0.135 0.000 *** 
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Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

 Effect coding 

The current scheme was performing better for greater effect sizes, bigger sample sizes (n = 144 

and n = 168) and the other number of levels as compared to the references (E = 1, n = 48, p = 3 

respectively). Although, EC used with normal data was doing better than when used with moderate 

non-normal data (Table 13). 

Table 13. Logistic regression model for the overall performance of Effect coding for balanced 

designs with independent variables: effect size (E), sample size (n), number of levels (p), type of 

distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds ratio lower 85%CI 

limit 

upper 85% CI 

limit 

Prob.  

Intercept -1.407 0.433 0.187 0.084 0.362 0.001 ** 

E8 4.146 0.386 0.884 0.868 0.883 0.000 *** 

E20 4.858 0.430 0.882 0.883 0.887 0.000 *** 

E50 4.858 0.430 0.882 0.883 0.887 0.000 *** 

n72 0.461 0.365 0.613 0.438 0.766 0.206 ns 

n86 0.255 0.358 0.563 0.381 0.723 0.476 ns 

n144 2.168 0.447 0.887 0.788 0.856 0.000 *** 

n168 1.356 0.404 0.785 0.641 0.887 0.001 *** 

p4 1.557 0.331 0.826 0.716 0.803 0.000 *** 

p6 0.620 0.281 0.650 0.514 0.768 0.033 * 

mu5 -2.278 0.433 0.083 0.041 0.188 0.000 *** 

mu10 -3.018 0.441 0.047 0.018 0.101 0.000 *** 

mu20 -2.218 0.432 0.088 0.043 0.188 0.000 *** 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

 

 Reverse helmert coding 

Reverse helmert contrasts associated with all the other effect size levels was more likely to 

perform well than when using the reference level. Plus, normal data related more to a good 

performance than the other type of distributions. This trend was the same for p = 3 as compared to 

p = 6 (Table 14). 
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Table 14. Logistic regression model for the overall performance of Reverse Helmert contrasts for 

balanced designs with independent variables: effect size (E), sample size (n), number of levels (p), 

type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds 

ratio 

lower 85%CI 

limit 

upper 85% CI 

limit 

Prob. 

Intercept 0.521 0.285 0.627 0.482 0.748 0.068 ns 

E8 2.183 0.260 0.888 0.843 0.837 0.000 *** 

E20 2.745 0.280 0.840 0.801 0.865 0.000 *** 

E50 2.745 0.280 0.840 0.801 0.865 0.000 *** 

p4 0.087 0.241 0.522 0.405 0.636 0.718 ns 

p6 -0.876 0.230 0.274 0.183 0.370 0.000 *** 

mu5 -1.688 0.303 0.155 0.081 0.246 0.000 *** 

mu10 -1.730 0.303 0.151 0.088 0.240 0.000 *** 

mu20 -1.603 0.303 0.168 0.088 0.265 0.000 *** 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

 

 Weighted effect coding 

There was no significant difference between the performance of the other levels of the 

predictors as compared to the reference levels (Table 15).  

Table 15. Logistic regression model for the overall performance of Weighted effect coding for 

balanced designs with independent variables: effect size (E), sample size (n), number of levels (p), 

type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard 

error 

Odds ratio lower 85%CI 

limit 

upper 85% CI 

limit 

Prob. 

Intercept -1.446 0.884 0.181 0.030 0.532 0.102 ns 

E8 -0.813 0.834 0.307 0.053 0.722 0.384 ns 

E20 -0.813 0.834 0.307 0.053 0.722 0.384 ns 

E50 -18.500 0.882 0.000 - 1.000 0.887 ns 

n72 -18.870 0.882 0.000 - 1.000 0.887 ns 

n86 -18.870 1.115 0.000 - 1.000 0.887 ns 

n144 0.470 1.115 0.615 0.188 0.831 0.632 ns 

n168 0.470 4365.861 0.615 0.188 0.831 0.632 ns 

p4 -20.018 4365.861 0.000 - 1.000 0.886 ns 

p6 -20.018 4627.708 0.000 - 1.000 0.886 ns 

mcbonf -1.876 5287.168 0.122 0.007 0.470 0.076 ns 

mcsid -1.876 5287.168 0.122 0.007 0.470 0.076 ns 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 
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3.3 Discussion  

The present work showed that the method of correction for type I error inflation did not 

really impact the performance of the coding structures involved in the study. This could be 

explained by the few number of comparisons involved Indeed, the current work only has a 

maximum of five contrasts to check. Although, the correction methods have been advised for 

multiple comparisons (Abdi, 2007), it may require a greater number of comparisons to picture their 

usefulness. 

Conversely, the effect size has been the principal variation trigger for the two types of 

performance. This really portrays the fact that the contrasts coefficients are based on the 

differences between the means. The bigger the size, the more likely the structure tends to perform 

well for all the contrasts. In fact, the effect size which represents the magnitude and direction of 

the difference between two groups can also be a percentage or a correlation (Vacha-Hasse & 

Thompson, 2004; Durlak, 2009). It is linked to the probability values assessing its significance and 

provides specific information depending on the context of the study. Though, there is no direct 

relationship between them (Durlak, 2009).  

There was no specific trend for the effect of the sample size. It may have an influence but 

still unclear. For instance, bigger sample sizes were linked to an overall performance for effect 

coding and reverse helmert structure. Also, only the per-contrast performance of dummy coding 

and reverse helmert were sample size dependent. The same remark holds for the number of levels, 

no specific trend occurred. It had an impact on the overall performance but the pattern was varying 

from one structure to another.  

On the other hand, normal data has been associated with the overall performance of the 

structures. This was expected because the normality of data has been mentioned as an assumption 

for contrasts analysis (Rafter, 2002). However, for dummy coding applied to unbalanced data, the 

opposite trend was remarked. This could be justified by the difference in designs but the link 

between normality and the type of design is yet to be found. 

Weighted coding has been the technique less subject to the factors variation as compared 

to the others. This suggests that it is robust enough in its structure to perform well.  Its robustness 

noticed in our study may confirm its application in generalized linear model (Grotenhuis,2016). 

This implies that it really does not require normality as an assumption. This structure has existed 

for decades but was less cited than other schemes such as dummy coding (Grotenhuis,2016). Also, 

its availability in R software is very recent. 
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4 Application in Ecology 
 

An experiment that examine growth and leaf biomass from seedlings of baobab was conducted 

in the three agro-ecological zones of Benin. One of the researchers were interested in discovering 

the effects of the dose of compost used on the height of seedlings, one of the growth parameter. 

The data and is constituted of 5400 observations and the factor “Dose” has four levels expressed 

in tons per hectare (t/ha): 0 t/ha, 10 t/ha, 20 t/ha and 30 t/ha. 

The researchers were interested in comparing the doses to a control dose which is 0 t/ha. The 

specific hypotheses were: 

 The height of seedlings in the plots enriched with 10 t/ha of compost was bigger than those 

not enriched (0 t/ha) 

 The height of seedlings in the plots enriched with 20 t/ha of compost was bigger than those 

not enriched (0 t/ha) 

 The height of seedlings in the plots enriched with 30 t/ha of compost was bigger than those 

not enriched (0 t/ha) 

The appropriate distribution for the data considered here is normal distribution. According to 

our simulation results, the suitable coding structure can be applied without using a correction 

method. Here, the number of levels, the distribution type of the response variable and the sample 

size are known. Plus, the effect size cannot be manipulated.  

The questions of interest can be answered using dummy coding. Then, a linear model had been 

used and yielded the results showed in Table 16. 

 

Table 16.   Linear model to test the effects of the compost dose on the height of seedlings 

  Estimate Standard error Prob.   

Dose = 0 t/ha (reference) 6.901 0.124 < 2e-16 *** 

Dose = 10 t/ha  0.235 0.181 0.193 ns 

Dose = 20 t/ha  0.147 0.176 0.406 ns 

Dose = 30 t/ha  0.763 0.174 1.12e-05 *** 
Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

The results showed that there was no significant difference between the height of seedlings 

where the plots were enriched with the doses 10 and 20 t/ha and the control group (Table 16). 

Conversely, the height of the plants where the compost dose was 30 t/ha was significantly different. 

Overall, the average height of seedlings was greater in the plots enriched with compost than those 

who were not enriched (Table 16).  From a practical standpoint, this implies that the effect of the 

compost is really noticeable for a dose of 30 t/ha.   
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Conclusion  
 

Coding structures are very useful for contrasts analysis under various types of models. In 

R statistical software, they are defined using many codes and embedded functions. Each of these 

structures has its benefits and limitations. However, the choice of the scheme to use depends 

mainly on the literature available and the type of comparison to make. The key to their 

interpretation is the understanding of the type of comparison being realized, the coefficients 

assignment and their sign. Contrast coding has been reported as the most sophisticated coding but 

dummy coding is still used because of the ease of interpretation. The output of our simulation 

study showed that the correction method for type I error inflation does not impact the coding 

structures’ overall performance and per-contrast performance. Conversely, the effect size affected 

these performances. The current study brings an overview on the performance of the most used 

coding structures but this topic could be addressed deeper. For instance, another work may be 

useful in finding out a potential range or threshold for applying the correction methods 

recommended in literature. 
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Appendices 
 

Appendix 1. Logistic regression odds ratio for dummy coding with balanced data  
 

Table 17.  Logistic regression model for the per-contrast performance of dummy coding for 

balanced designs with independent variables: effect size (E), sample size (n), number of levels (p), 

type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds ratio lower 85%CI 

limit 

upper 85% 

CI limit 

Prob.  

Intercept 38.714 4320.188 1.000 0.000 1.000 0.883 ns 

E8 20.618 3276.371 1.000 0.000 - 0.885 ns 

E20 20.618 3276.371 1.000 0.000 - 0.885 ns 

E50 20.618 3276.371 1.000 0.000 - 0.885 ns 

n72 -18.375 3210.824 0.000 - 1.000 0.885 ns 

n86 -18.213 3210.824 0.000 0.000 1.000 0.885 ns 

n144 -18.213 3210.824 0.000 0.000 1.000 0.885 ns 

n168 -18.608 3210.824 0.000 - 1.000 0.885 ns 

mu5 -18.462 2880.327 0.000 - 1.000 0.885 ns 

mu10 -18.462 2880.327 0.000 - 1.000 0.885 ns 

mu20 -18.718 2880.327 0.000 0.000 1.000 0.885 ns 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

 
 

Appendix 2. Logistic regression odds ratio for dummy coding with unbalanced data 
 

Table 18. Logistic regression model for the per-contrast performance of dummy coding for 

unbalanced designs with independent variables: effect size (E), sample size (n), number of levels 

(p), type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds ratio lower 85%CI 

limit 

upper 85% 

CI limit 

Prob.  

Intercept 6.578 1.001 0.888 0.884 1.000 0.000 ** 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 
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Appendix 3. Logistic regression odds ratio for effect coding 
 
 Table 19. Logistic regression model for the per-contrast performance of effect coding for 

unbalanced designs with independent variables: effect size (E), sample size (n), number of levels 

(p), type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds ratio lower 85%CI 

limit 

upper 85% CI 

limit 

Prob.  

Intercept 42.004 10156.408 1.000 0.000 - 0.887 ns 

E8 22.148 7288.086 1.000 0.000 - 0.888 ns 

E20 22.148 7288.086 1.000 0.000 - 0.888 ns 

E50 22.148 7288.086 1.000 0.000 - 0.888 ns 

n72 -20.565 7523.854 0.000 - 1.000 0.888 ns 

n86 -21.725 7523.854 0.000 - 1.000 0.888 ns 

n144 0.000 10640.478 0.500 0.000 1.000 1.000 ns 

n168 -20.565 7523.854 0.000 - 1.000 0.888 ns 

p4 21.710 5868.803 1.000 0.000 - 0.887 ns 

p6 3.242 1.180 0.862 0.782 0.888 0.006 ** 

mu5 -21.106 6822.226 0.000 - 1.000 0.888 ns 

mu10 -21.501 6822.226 0.000 - 1.000 0.887 ns 

mu20 0.000 8648.085 0.500 0.000 1.000 1.000 ns 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 

 

Appendix 4. Logistic regression odds ratio for reverse helmert  
 

Table 20. Logistic regression model for the per-contrast performance of reverse helmert coding 

for unbalanced designs with independent variables: effect size (E), sample size (n), number of 

levels (p), type of distribution (mu) and the method of correction (mc) 

Predictors Estimates Standard error Odds 

ratio 

lower 85%CI 

limit 

upper 85% CI 

limit 

Prob.  

Intercept 42.868 10501.030 1.000 0.000 - 0.887 ns 

E8 21.818 7364.832 1.000 0.000 - 0.888 ns 

E20 21.818 7364.832 1.000 0.000 - 0.888 ns 

E50 21.818 7364.832 1.000 0.000 - 0.888 ns 

n72 0.000 11183.260 0.500 0.000 1.000 1.000 ns 

n86 -20.832 7807.760 0.000 - 1.000 0.888 ns 

n144 0.000 11183.260 0.500 0.000 1.000 1.000 ns 

n168 -21.568 7807.760 0.000 - 1.000 0.888 ns 

p4 20.208 5788.768 1.000 0.000 - 0.887 ns 

p6 -0.737 0.871 0.324 0.073 0.720 0.387 ns 

mu5 0.000 8771.285 0.500 0.000 1.000 1.000 ns 

mu10 -21.288 6808.348 0.000 - 1.000 0.888 ns 

mu20 -20.562 6808.348 0.000 - 1.000 0.888 ns 

Prob.: probability value; Asterisks represent the significance level for each term of the model: *** 

significant at 0.1%; ** significant at 1 %; * significant at 5 %; ns not significant 
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Appendix 5. Coefficients of gamma models for dummy coding with balanced data  
 

Table 21.  GLM with gamma structure for errors to test the effects effect size (E), sample size (n), 

number of levels (p), type of distribution (mu) and the method of correction (mc) on the occurrence 

of performance of the dummy coding (balanced design).  

Predictors Estimates lower 85%CI limit upper 85% CI limit Prob.  

Intercept 0.663 0.617 0.714 0.000 *** 

E8 1.644 1.547 1.747 0.000 *** 

E20 1.721 1.618 1.828 0.000 *** 

E50 1.721 1.618 1.828 0.000 *** 

n72 1.005 0.842 1.072 0.878 ns 

n86 0.862 0.801 1.027 0.246 ns 

n144 1.065 0.888 1.137 0.058 ns 

n168 1.121 1.048 1.186 0.001 *** 

p4 0.883 0.834 1.034 0.504 ns 

p6 0.818 0.872 0.867 0.001 ** 

mu5 0.804 0.758 0.853 0.000 *** 

mu10 0.785 0.740 0.833 0.000 *** 

mu20 0.764 0.720 0.811 0.000 *** 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

 

Appendix 6. Coefficients of gamma models for dummy coding with unbalanced data  
 

Table 22. GLM with gamma structure for errors to test the effects of size (E), sample size (n), 

number of levels (p), type of distribution (mu) and the method of correction (mc) on the occurrence 

of performance of dummy coding (unbalanced design).  

Predictors Estimates lower 85%CI limit upper 85% CI limit Prob.  

Intercept 0.661 0.628 0.686 0.000 *** 

E8 1.883 1.881 2.100 0.000 *** 

E20 2.027 1.823 2.136 0.000 *** 

E50 2.027 1.823 2.136 0.000 *** 

p4 0.844 0.802 0.887 0.011 * 

p6 0.863 0.825 0.802 0.000 *** 

mu5 0.770 0.731 0.811 0.000 *** 

mu10 0.745 0.707 0.785 0.000 *** 

mu20 0.735 0.688 0.775 0.000 *** 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 
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Appendix 7. Coefficients of gamma models for effect coding  
 

Table 23. GLM with gamma structure for errors to test the effects of effect size (E), sample size 

(n), number of levels (p), type of distribution (mu) and the method of correction (mc) on the 

occurrence of performance of effect coding.  

Predictors Estimates lower 85%CI limit upper 85% CI limit Prob.  

Intercept 0.640 0.605 0.676 0.000 *** 

E8 1.7146534 1.6217601 1.8127856 2.76E-66 *** 

E20 1.7484382 1.6535876 1.8486446 4.15E-70 *** 

E50 1.7484382 1.6535876 1.8486446 4.15E-70 *** 

p4 1.0700655 1.0204688 1.1220547 5.28E-03 ** 

p6 0.8654055 0.8204813 1.0124872 1.47E-01 ns 

mu5 0.8488508 0.8045743 0.8878887 7.83E-08 *** 

mu10 0.7761377 0.7343865 0.8202738 8.88E-18 *** 

mu20 0.8076778 0.7646105 0.8531684 3.73E-14 *** 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

 

Appendix 8. Coefficients of gamma models for reverse helmert coding  
 

Table 24. GLM with gamma structure for errors to test the effects of effect size (E), sample size 

(n), number of levels (p), type of distribution (mu) and the method of correction (mc) on the 

occurrence of performance of reverse helmert.  

Predictors Estimates lower 85%CI limit upper 85% CI limit Prob.  

Intercept 0.648 0.602 0.700 0.000 *** 

E8 1.678 1.578 1.784 0.000 *** 

E20 1.737 1.633 1.847 0.000 *** 

E50 1.737 1.633 1.847 0.000 *** 

n72 1.011 0.846 1.081 0.743 ns 

n86 0.887 0.823 1.055 0.702 ns 

n144 1.088 1.018 1.163 0.013 * 

n168 1.138 1.064 1.218 0.000 *** 

p4 0.886 0.836 1.038 0.582 ns 

p6 0.888 0.843 0.837 0.000 *** 

mu5 0.813 0.765 0.863 0.000 *** 

mu10 0.784 0.738 0.833 0.000 *** 

mu20 0.785 0.738 0.834 0.000 *** 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 
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Appendix 9. Coefficients of gamma models for weighted effect coding  
 

Table 25. GLM with gamma structure for errors test the effects of effect size (E), sample size (n), 

number of levels (p), type of distribution (mu) and the method of correction (mc) on the occurrence 

of performance of weighted effect coding.  

Predictors Estimates lower 85%CI limit upper 85% CI limit Prob.  

Intercept 10.433 8.283 11.737 0.000 *** 

E8 0.470 0.423 0.521 0.000 *** 

E20 0.534 0.480 0.585 0.000 *** 

E50 0.540 0.485 0.601 0.000 *** 

p4 0.708 0.650 0.773 0.000 *** 

p6 0.606 0.558 0.658 0.000 *** 

mu5 1.148 1.051 1.256 0.002 ** 

mu10 1.164 1.065 1.273 0.001 *** 

mu20 1.148 1.052 1.256 0.002 ** 

Asterisks represent the significance level for each term of the model: *** significant at 0.1%; ** significant 

at 1 %; * significant at 5 %; ns not significant 

 


