Abstract:
Water stress is one of the major environmental factors that inhibits metabolic processes and
constrains plant growth and crop productivity in the majority of agricultural fields. Wheat is
generally grown on arid-agricultural fields and water stress often causes serious challenges
in wheat production areas. Field and green house experiments were conducted at Mekelle
University to evaluate physiological and agronomic traits as screening techniques for yield
and drought tolerance in wheat cultivars. The experiment comprised of six wheat genotypes
and three water stress regimes. Water stress was maintained by withholding water for 10
days at tillering and at booting stages. The experiment was laid out in Randomized
Complete Block Design in factorial combination of the six wheat genotypes and three water
regimes with three replications in both experiments. Analysis of variance for parameters
associated with physiological, agronomic and drought tolerance as well as yield
componentsrevealed a significant difference among the genotypes . Water stress caused
reduction in relative water content, initial water content, rate of water loss, yield and yield components and increment in excised leaf water retention of the six studied wheat
genotypes. Pearson’s correlation coefficient at 5% probability level indicated that yield and
drought tolerance index were positively and significantly correlated with relative water
content, excised leaf water retention, initial water content, spike length, number of seed per
spike, yield stability index, mean productivity and seed weight where as stress
susceptibility index and rate of water loss were negatively associated with yield and
drought tolerance index. Regression analysis also showed that rate of water loss, initial
water content, relative water content at both stem elongation and grain filling stage explain
more of the variation in grain yield under normal condition where as traits such as relative
water contents at stem elongation, excised leaf water retention, initial water content at grain
filling stage and plant height when water stress was imposed at tillering stage and traits like
days to heading, initial water content at stem elongation and grain filling stage , relative
water content ate grain filling stage and rate of water loss explained more of the variation in grain yield and drought tolerance index under water stress at booting stage. More over principal component analysis extracted three components which explained 91.47 percent of
the total variation, were the first component explained 58.65 percent with, initial water
content at grain filling stage, stress tolerance index, excised leaf water retention, spike
length, mean productivity, initial water content at stem elongation, relative water content at
stem elongation Seed per spike, yield stability index, seed weight and grain yield per plant.
Genotypes Dandea, Mekelle 3 and Mekelle 4 had higher relative water content, excised leaf
water retention, initial water content, mean productivity, yield stability index and stress
tolerance index than the other three genotypes (Hawii, Shina and Medawalabu) whereas
stress susceptibility index and rate of water loss was observed at its lowest. Traits like
relative water content, excised leaf water retention, initial water content, days to flowering,
are recognized as beneficial water stress tolerance indicators for selecting a stress tolerant
variety. Similarly, total grain yield per plant, spike length, seed per spike and 1000 seed
weight was also higher in the same wheat varieties, which put it as a good candidate for selection in wheat breeding program for drought resistance. Hence plant breeders should
incorporate these physiological traits as a selection criterion in their breeding program for
screening water stress tolerance wheat cultivars.
Language:
English
Date of publication:
2013
Country:
Region Focus:
East Africa
University/affiliation:
Collection:
RUFORUM Theses and Dissertations
Agris Subject Categories:
Agrovoc terms:
Additional keywords:
Licence conditions:
Open Access
Access restriction:
Supervisor:
Dr. Edward George Mamati & Dr. Tesfay Belay
Form:
Printed resource
Publisher:
ISSN:
E_ISSN:
Edition:
Extent:
xiii, 86